Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T00:03:25.111Z Has data issue: false hasContentIssue false

Asymptotic expansions for laminar forced-convection heat and mass transfer

Published online by Cambridge University Press:  28 March 2006

Andreas Acrivos
Affiliation:
Department of Chemical Engineering, University of California, Berkeley, California
J. D. Goddard
Affiliation:
Department of Chemical Engineering, University of California, Berkeley, California

Extract

A method is presented in this article for deriving higher-order correction terms to the well-known asymptotic results for laminar forced-convection heat and mass transfer, and a formula is obtained for computing under fairly general conditions the first correction term to the asymptotic Nusselt number at large Péclet numbers for flows with small or moderate Reynolds numbers. This result is then applied to the problem of heat transfer from a solid, isothermal sphere in Stokes flow, to yield the asymptotic expression for the average Nusselt number,

for Pe→ ∞, Re→ 0, where and Pe are based on the radius of the sphere.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Now at the Department of Chemical Engineering, Stanford University, Stanford, California.

Now at the Department of Chemical and Metallurgical Engineering, University of Michigan, Ann Arbor, Michigan.

References

Acrivos, A. 1960 Phys. Fluids, 3, 657.CrossRefGoogle Scholar
Acrivos, A. & Taylor, T. D. 1962 Phys. Fluids, 5, 387.CrossRefGoogle Scholar
Erdelyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. (eds.) 1954 Higher Transcendental Functions. Bateman Manuscript Project, 3 vols. New York: McGraw-Hill.Google Scholar
Friedman, B. 1956 Principles and Techniques of Applied Mathematics. New York: John Wiley & Sons.Google Scholar
Hardy, G. H. 1932 J. London Math. Soc. 7, 138, 192.CrossRefGoogle Scholar
Herbeck, M. 1954 J. Aero Sci. 21, 142.Google Scholar
Hille, E. 1926 Proc. Nat. Acad. Sci. 12, 261, 348.CrossRefGoogle Scholar
Lamb, H. 1945 Hydrodynamics. New York: Dover.Google Scholar
Lauwerier, H. A. 1959 Appl. Sci. Res. A, 8, 366.CrossRefGoogle Scholar
Lefur, B. 1960 Int. J. Heat & Mass Trans. 1, 68.CrossRefGoogle Scholar
Levich, V. G. 1962 Physico Chemical Hydrodynamics (translated from the Russian). Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
Lighthill, M. J. 1950 Proc. Roy. Soc. A, 202, 369.Google Scholar
Meksyn, D. 1961 New Methods in Laminar Boundary Layer Theory. New York: Pergamon Press.Google Scholar
Mercer, A. McD. 1959 Appl. Sci. Res. A, 8, 357.CrossRefGoogle Scholar
Mercer, A. McD. 1960 Appl. Sci. Res. A, 9, 450.CrossRefGoogle Scholar
Merk, H. J. 1959 J. Fluid Mech. 5, 460.CrossRefGoogle Scholar
Morgan, G. W., Pipkin, A. C. & Warner, W. H. 1958 J. Aero. Sci. 25, 173.Google Scholar
Morgan, G. W. & Warner, W. H. 1956 J. Aero. Sci. 23, 937.CrossRefGoogle Scholar
Myller-Lebedeff, W. 1907 Math. Ann. 64, 388.CrossRefGoogle Scholar
Sutton, W. G. L. 1943 Proc. Roy. Soc. A, 182, 48.Google Scholar