Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T07:15:10.489Z Has data issue: false hasContentIssue false

Heat transport and flow morphology of geostrophic rotating Rayleigh–Bénard convection in the presence of boundary flow

Published online by Cambridge University Press:  22 November 2023

Guang-Yu Ding
Affiliation:
Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Department of Physics, The Chinese University of Hong Kong, Hong Kong, PR China
Ke-Qing Xia*
Affiliation:
Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
*
Email address for correspondence: xiakq@sustech.edu.cn

Abstract

Using direct numerical simulations, we investigate the heat transport in bulk and boundary flows separately in rotating Rayleigh–Bénard convection in cylindrical cells. In the bulk we observe a steep scaling relationship between the Nusselt number ($Nu$) and the Rayleigh number ($Ra$), which is consistent with the results from simulations using periodic boundary conditions. For the boundary flow, we observe a power law $Nu_{BF}\sim (Ra/Ra_w)^1$ at the leading order, where $Nu_{BF}$ is the local Nusselt number of the boundary flow and $Ra_w$ is the onset Rayleigh number of the wall mode. We develop a model using the boundary layer marginal stability theory to explain this power law, and further show that a more precise description of the data can be obtained if a higher-order correction is introduced. A striking finding of our study is the observation of a sharp transition in flow state, manifested by a sudden drop in $Nu_{BF}$ with a corresponding collapse of the boundary flow coherency. After the transition, the boundary flow breaks into vortices, leading to a reduction in flow coherency and heat transport efficiency. As the physical properties of the vortices should not depend on the aspect ratio, $Nu_{BF}$ for all aspect ratios collapse together after the transition. Moreover, the centrifugal force helps trigger the breakdown of the coherent boundary flow state. For this reason, $Nu_{BF}$ for the cases with non-zero centrifugal force collapse together. We further develop a method that enables us to separate the contributions from the bulk and boundary flows in the global Nusselt number using only the global $Nu$ and it does not require the centrifugal force to be absent.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cai, T. 2021 Large-scale vortices in rapidly rotating Rayleigh–Bénard convection at small Prandtl number. Astrophys. J. 923 (2), 138.CrossRefGoogle Scholar
Chen, C. & Guo, X. 2003 Convective instability in a rapidly rotating fluid layer in the presence of a non-uniform magnetic field. Acta Mechanica Sin. 19 (6), 527534.Google Scholar
Cheng, J.S., Aurnou, J.M., Julien, K. & Kunnen, R.P.J. 2018 A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys. Astrophys. Fluid Dyn. 112 (4), 277300.CrossRefGoogle Scholar
Cheng, J.S., Stellmach, S., Ribeiro, A., Grannan, A., King, E.M. & Aurnou, J.M. 2015 Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys. J. Intl 201 (1), 117.CrossRefGoogle Scholar
Cheng, S., Madonia, M., Aguirre Guzmán, A.J. & Kunnen, R.P.J. 2020 Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection. Phys. Rev. Fluids 5 (11), 113501.CrossRefGoogle Scholar
Chong, K.L., Ding, G. & Xia, K.-Q. 2018 Multiple-resolution scheme in finite-volume code for active or passive scalar turbulence. J. Comput. Phys. 375, 10451058.CrossRefGoogle Scholar
Chong, K.L., Shi, J.-Q., Ding, G.-Y., Ding, S.-S., Lu, H.-Y., Zhong, J-Q. & Xia, K.-Q. 2020 Vortices as Brownian particles in turbulent flows. Sci. Adv. 6 (34), 18.CrossRefGoogle ScholarPubMed
Cross, M.C. & Hohenberg, P.C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 8511112.CrossRefGoogle Scholar
Ding, S.-S., Chong, K.L., Shi, J.-Q., Ding, G.-Y., Lu, H.-Y., Xia, K.-Q. & Zhong, J.-Q. 2021 Inverse centrifugal effect induced by collective motion of vortices in rotating thermal convection. Nat. Commun. 12 (1), 17.CrossRefGoogle ScholarPubMed
Ecke, R.E. & Niemela, J.J. 2014 Heat transport in the geostrophic regime of rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 113 (11), 114301.CrossRefGoogle ScholarPubMed
Ecke, R.E., Zhang, X. & Shishkina, O. 2021 Connecting wall modes and boundary zonal flows in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 011501, 18.Google Scholar
Ecke, R.E., Zhang, X. & Shishkina, O. 2022 Connecting wall modes and boundary zonal flows in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 7 (1), L011501.CrossRefGoogle Scholar
Ecke, R.E., Zhong, F. & Knobloch, E. 1992 Hopf bifurcation with broken reflection symmetry in rotating Rayleigh–Bénard convection. Europhys. Lett. 19 (3), 177182.CrossRefGoogle Scholar
Favier, B., Guervilly, C. & Knobloch, E. 2019 Subcritical turbulent condensate in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 864, R1.CrossRefGoogle Scholar
Favier, B. & Knobloch, E. 2020 Robust wall states in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 895, R1.CrossRefGoogle Scholar
Funfschilling, D., Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536, 145154.CrossRefGoogle Scholar
Gastine, T. & Aurnou, J.M. 2023 Latitudinal regionalization of rotating spherical shell convection. J. Fluid Mech. 954, R1.CrossRefGoogle Scholar
Guervilly, C., Hughes, D.W. & Jones, C.A. 2014 Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758, 407435.CrossRefGoogle Scholar
Herrmann, J. & Busse, F.H. 1993 Asymptotic theory of wall-attached convection in a rotating fluid layer. J. Fluid Mech. 255, 183194.CrossRefGoogle Scholar
Horn, S. & Aurnou, J.M. 2018 Regimes of Coriolis-centrifugal convection. Phys. Rev. Lett. 120 (20), 204502.CrossRefGoogle ScholarPubMed
Hu, Y.-B., Huang, S.-D., Xie, Y.-C. & Xia, K.-Q. 2021 Centrifugal-force-induced flow bifurcations in turbulent thermal convection. Phys. Rev. Lett. 127 (24), 244501.CrossRefGoogle ScholarPubMed
Hu, Y.-B. & Xia, K.-Q. 2023 An experimental study of off-centred rotating thermal convection: a laboratory model for the tidal effects. J. Fluid Mech. 966, A21.CrossRefGoogle Scholar
Hu, Y.-B., Xie, Y.-C. & Xia, K.-Q. 2022 On the centrifugal effect in turbulent rotating thermal convection: onset and heat transport. J. Fluid Mech. 938, 114.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research Report CTR-S88, pp. 193–208. Center for Turbulence Research.Google Scholar
Jiang, H., Zhu, X., Wang, D., Huisman, S.G. & Sun, C. 2020 Supergravitational turbulent thermal convection. Sci. Adv. 6 (40), eabb8676.CrossRefGoogle ScholarPubMed
Julien, K., Aurnou, J.M., Calkins, M.A., Knobloch, E., Marti, P., Stellmach, S. & Vasil, G.M. 2016 A nonlinear model for rotationally constrained convection with Ekman pumping. J. Fluid Mech. 798, 5087.CrossRefGoogle Scholar
Julien, K., Knobloch, E., Rubio, A.M. & Vasil, G.M. 2012 Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 109 (25), 254503.CrossRefGoogle ScholarPubMed
Kaczorowski, M., Chong, K.-L. & Xia, K.-Q. 2014 Turbulent flow in the bulk of Rayleigh–Bénard convection: aspect-ratio dependence of the small-scale properties. J. Fluid Mech. 747, 73102.CrossRefGoogle Scholar
Kaczorowski, M. & Xia, K.-Q. 2013 Turbulent flow in the bulk of Rayleigh–Bénard convection: small-scale properties in a cubic cell. J. Fluid Mech. 722, 596617.CrossRefGoogle Scholar
King, E.M., Stellmach, S. & Aurnou, J.M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.CrossRefGoogle Scholar
King, E.M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J.M. 2009 Boundary layer control of rotating convection systems. Nature 457 (7227), 301304.CrossRefGoogle ScholarPubMed
Knobloch, E. 1998 Rotating convection: recent developments. Intl J. Engng Sci. 36 (12–14), 14211450.CrossRefGoogle Scholar
Kunnen, R.P.J. 2021 The geostrophic regime of rapidly rotating turbulent convection. J. Turbul. 22 (4–5), 267296.CrossRefGoogle Scholar
Kunnen, R.P.J., Clercx, H.J.H. & Van Heijst, G.J.F. 2013 The structure of sidewall boundary layers in confined rotating Rayleigh–Bénard convection. J. Fluid Mech. 727, 509532.CrossRefGoogle Scholar
Lu, H.-Y., Ding, G.-Y., Shi, J.-Q., Xia, K.-Q. & Zhong, J.-Q. 2021 Heat-transport scaling and transition in geostrophic rotating convection with varying aspect ratio. Phys. Rev. Fluids 6 (7), L071501.CrossRefGoogle Scholar
Malkus, W.V.R. 1954 Discrete transitions in turbulent convection. Proc. R. Soc. Lond. A 225 (1161), 185195.Google Scholar
Niiler, P.P. & Bisshopp, F.E. 1965 On the influence of Coriolis force on onset of thermal convection. J. Fluid Mech. 22 (4), 753761.CrossRefGoogle Scholar
O'Neill, M.E., Emanuel, K.A. & Flierl, G.R. 2015 Polar vortex formation in giant-planet atmospheres due to moist convection. Nat. Geosci. 8 (7), 523526.CrossRefGoogle Scholar
Plumley, M. & Julien, K. 2019 Scaling laws in Rayleigh–Bénard convection. Earth Space Sci. 6 (9), 15801592.CrossRefGoogle Scholar
Plumley, M., Julien, K., Marti, P. & Stellmach, S. 2016 The effects of Ekman pumping on quasi-geostrophic Rayleigh–Bénard convection. J. Fluid Mech. 803, 5171.CrossRefGoogle Scholar
Plumley, M., Julien, K., Marti, P. & Stellmach, S. 2017 Sensitivity of rapidly rotating Rayleigh–Bénard convection to Ekman pumping. Phys. Rev. Fluids 2 (9), 115.CrossRefGoogle Scholar
Siegelman, L., et al. 2022 Moist convection drives an upscale energy transfer at Jovian high latitudes. Nat. Phys. 18 (3), 357361.CrossRefGoogle Scholar
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J.S., Ribeiro, A., King, E.M. & Aurnou, J.M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113 (25), 15.CrossRefGoogle ScholarPubMed
Stevens, R.J.A.M., Zhong, J.-Q., Clercx, H.J.H., Ahlers, G. & Lohse, D. 2009 Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103 (2), 024503.CrossRefGoogle ScholarPubMed
Wang, D., Liu, J., Zhou, Q. & Sun, C. 2022 Statistics of temperature and velocity fluctuations in supergravitational convective turbulence. Acta Mechanica Sin. 39 (4), 122387.Google Scholar
Wedi, M., Moturi, V.M., Funfschilling, D. & Weiss, S. 2022 Experimental evidence for the boundary zonal flow in rotating Rayleigh–Bénard convection. J. Fluid Mech. 939, 119.CrossRefGoogle Scholar
Weiss, S., Stevens, R.J.A.M., Zhong, J.-Q., Clercx, H.J.H., Lohse, D. & Ahlers, G. 2010 Finite-size effects lead to supercritical bifurcations in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 105 (22), 14.CrossRefGoogle ScholarPubMed
de Wit, X.M., Aguirre Guzmán, A.J., Madonia, M., Cheng, J.S., Clercx, H.J.H. & Kunnen, R.P.J. 2020 Turbulent rotating convection confined in a slender cylinder: the sidewall circulation. Phys. Rev. Fluids 5 (2), 023502.CrossRefGoogle Scholar
Zhang, K. & Liao, X. 2009 The onset of convection in rotating circular cylinders with experimental boundary conditions. J. Fluid Mech. 622, 6373.CrossRefGoogle Scholar
Zhang, X., Ecke, R.E. & Shishkina, O. 2021 Boundary zonal flows in rapidly rotating turbulent thermal convection. J. Fluid Mech. 915, A62.CrossRefGoogle Scholar
Zhang, X., van Gils, D.P.M., Horn, S., Wedi, M., Zwirner, L., Ahlers, G., Ecke, R.E., Weiss, S., Bodenschatz, E. & Shishkina, O. 2019 Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 124 (8), 84505.CrossRefGoogle Scholar
Zhong, F., Ecke, R. & Steinberg, V. 1991 Asymmetric modes and the transition to vortex structures in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 67 (18), 24732476.CrossRefGoogle ScholarPubMed
Zhong, F., Ecke, R.E. & Steinberg, V. 1993 Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249 (1), 135.CrossRefGoogle Scholar
Zhong, J.-Q., Stevens, R.J.A.M., Clercx, H.J.H., Verzicco, R., Lohse, D.f & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102 (4), 044502.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ding and Xia supplementary material
Download undefined(File)
File 128 KB