Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T21:06:26.324Z Has data issue: false hasContentIssue false

High-speed X-ray imaging of a ball impacting on loose sand

Published online by Cambridge University Press:  22 July 2015

Tess Homan*
Affiliation:
Physics of Fluids, University of Twente, 7500 AE Enschede, The Netherlands Laboratoire de Physique, ENS de Lyon, 69364 Lyon CEDEX 07, France
Rob Mudde
Affiliation:
Department of Chemical Engineering, Delft University of Technology, 2628 BL Delft, The Netherlands
Detlef Lohse
Affiliation:
Physics of Fluids, University of Twente, 7500 AE Enschede, The Netherlands
Devaraj van der Meer
Affiliation:
Physics of Fluids, University of Twente, 7500 AE Enschede, The Netherlands
*
Email address for correspondence: tesshoman@gmail.com

Abstract

When a ball is dropped in fine very loose sand, a splash and subsequently a jet are observed above the bed, followed by a granular eruption. To directly and quantitatively determine what happens inside the sand bed, high-speed X-ray tomography measurements are carried out in a custom-made set-up that allows for imaging of a large sand bed at atmospheric pressures. Herewith, we show that the jet originates from the pinch-off point created by the collapse of the air cavity formed behind the penetrating ball. Subsequently, we measure how the entrapped air bubble rises through the sand, and show that this is consistent with bubbles rising in continuously fluidized beds. Finally, we measure the packing fraction variation throughout the bed. From this we show that there is (i) a compressed area of sand in front of and next to the ball while the ball is moving down, (ii) a strongly compacted region at the pinch-off height after the cavity collapse and (iii) a relatively loosely packed centre in the wake of the rising bubble.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergmann, R., van der Meer, D., Gekle, S., van der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381.CrossRefGoogle Scholar
Bergmann, R., van der Meer, D., Stijnman, M., Sandtke, M., Prosperetti, A. & Lohse, D. 2006 Giant bubble pinch-off Phys. Rev. Lett. 96, 154505.Google Scholar
Boudet, J. F., Amarouchene, Y. & Kellay, H. 2006 Dynamics of impact cratering in shallow sand layers. Phys. Rev. Lett. 96, 158001.Google Scholar
Caballero, G., Bergmann, R., van der Meer, D., Prosperetti, A. & Lohse, D. 2007 Role of air in granular jet formation. Phys. Rev. Lett. 99, 018001.CrossRefGoogle ScholarPubMed
Cho, G., Dodds, J. & Santamarina, J. C. 2006 Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132, 591602.CrossRefGoogle Scholar
Ciamarra, M. P., Lara, A. H., Lee, A. T., Goldman, D. I. & Vishik, I. 2004 Dynamics of drag and force distributions for projectile impact in a granular medium. Phys. Rev. Lett. 92, 194301.Google Scholar
Davidson, J. & Harrison, D. 1963 Fluidised Particles. Cambridge University Press.Google Scholar
Delaney, G. W., Hilton, J. E. & Cleary, P. W. 2011 Defining random loose packing for nonspherical grains. Phys. Rev. E 83, 051305.CrossRefGoogle ScholarPubMed
Duclaux, V., Caillé, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Dynamics of transient cavities. J. Fluid Mech. 591, 119.Google Scholar
Eggers, J., Fontelos, M. A., Leppinen, D. & Snoeijer, J. H. 2007 Theory of the collapsing axisymmetric cavity. Phys. Rev. Lett. 98, 094502.Google Scholar
Gekle, S., Gordillo, J. M., van der Meer, D. & Lohse, D. 2009a High-speed jet formation after solid object impact. Phys. Rev. Lett. 102, 034502.Google Scholar
Gekle, S., Snoeijer, J. H., Lohse, D. & van der Meer, D. 2009b Approach to universality in axisymmetric inviscid bubble pinch-off. Phys. Rev. E 80, 036305.CrossRefGoogle ScholarPubMed
Gordillo, J. M. & Pérez-Saborid, M. 2006 Axisymmetric breakup of bubbles at high Reynolds numbers. J. Fluid Mech. 562, 303312.Google Scholar
von Kann, S., Joubaud, S., Caballero-Robledo, G. A., Lohse, D. & van der Meer, D. 2010 Effect of finite container size on granular jet formation. Phys. Rev. E 81, 041306.Google Scholar
Katsuragi, H. & Durian, D. J. 2007 Unified force law for granular impact cratering. Nat. Phys. 3, 420423.CrossRefGoogle Scholar
Lohse, D. 2003 Bubble puzzles. Phys. Today 56, 3642.CrossRefGoogle Scholar
Lohse, D., Bergmann, R. P. H. M., Mikkelsen, R., Zeilstra, C., van der Meer, D., Versluis, A. M., van der Weele, J. P., van der Hoef, M. & Kuipers, J. A. M. 2004a Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93, 198003.CrossRefGoogle ScholarPubMed
Lohse, D., Rauhe, R., Bergmann, R. P. H. M. & van der Meer, D. 2004b Dry quicksand. Nature 432, 689.CrossRefGoogle ScholarPubMed
Marston, J. O., Seville, J. P. K., Cheun, Y.-V. & Ingram, A. 2008 Effect of packing fraction on granular jetting from solid sphere entry into aerated and fluidized beds. Phys. Fluids 20, 023301.Google Scholar
Melosh, H. J. 1989 Impact Cratering: A Geologic Process. Oxford University Press.Google Scholar
Mudde, R. F. 2010a Double X-ray tomography of a bubbling fluidized bed. Ind. Eng. Chem. Res. 49, 50615065.Google Scholar
Mudde, R. F. 2010b Time-resolved X-ray tomography of a fluidized bed. Powder Technol. 199, 5559.CrossRefGoogle Scholar
Mudde, R. F., Alles, J. & van der Hagen, T. H. J. J. 2008 Feasibility study of a time-resolving X-ray tomographic system. Meas. Sci. Technol. 19, 085501.Google Scholar
Oguz, H. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.Google Scholar
Pacheco-Vázquez, F., Caballero-Robledo, G. A., Solano-Altamirano, J. M., Altshuler, E., Batista-Leyva, A. J. & Ruiz-Suárez, J. C. 2011 Infinite penetration of a projectile into a granular medium. Phys. Rev. Lett. 106, 218001.Google Scholar
Royer, J. R., Conyers, B., Corwin, E. I., Eng, P. J. & Jaeger, H. M. 2011 The role of interstitial gas in determining the impact response of granular beds. Europhys. Lett. 93, 28008.CrossRefGoogle Scholar
Royer, J. R., Corwin, E. I., Conyers, B., Flior, A., Rivers, M. L., Eng, P. J. & Jaeger, H. M. 2008 Birth and growth of a granular jet. Phys. Rev. E 78, 011305.CrossRefGoogle ScholarPubMed
Royer, J. R., Corwin, E. I., Eng, P. J. & Jaeger, H. M. 2007 Gas-mediated impact dynamics in fine-grained granular materials. Phys. Rev. Lett. 99, 038003.Google Scholar
Royer, J. R., Corwin, E. I., Flior, A., Cordero, M.-L., Rivers, M. L., Eng, P. J. & Jaeger, H. M. 2005 Formation of granular jets observed by high-speed X-ray radiography. Nat. Phys. 1, 164.Google Scholar
Ruiz-Suárez, J. C. 2013 Penetration of projectiles into granular targets. Rep. Prog. Phys. 76, 066601.CrossRefGoogle ScholarPubMed
Seguin, A., Bertho, Y. & Gondret, P. 2008 Influence of confinement on granular penetration by impact. Phys. Rev. E 78, 010301R.Google Scholar
Thoroddsen, S. & Shen, A. 2001 Granular jets. Phys. Fluids 13, 46.Google Scholar
Umbanhowar, P. & Goldman, D. I. 2010 Granular impact and the critical packing state. Phys. Rev. E 82, 010301R.Google Scholar
Walsh, A., Holloway, K. E., Habdas, P. & de Bruyn, J. R. 2003 Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91, 104301.Google Scholar
Worthington, A. M. 1908 A Study of Splashes. Longman and Green.Google Scholar
Yang, R. Y., Zou, R. P. & Yu, A. B. 2000 Computer simulation of the packing of fine particles. Phys. Rev. E 62, 39003908.Google Scholar