Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T04:44:39.708Z Has data issue: false hasContentIssue false

How long are tidal channels?

Published online by Cambridge University Press:  23 November 2009

G. SEMINARA
Affiliation:
Department of Civil and Environmental Engineering, University of Genova, via Montallegro 1, 16145 Genova, Italy
S. LANZONI
Affiliation:
Dipartimento di Ingegneria Idraulica, Marittima, Ambientale e Geotecnica, University of Padova, via Loredan 20, 35131 Padova, Italy
N. TAMBRONI*
Affiliation:
Department of Civil and Environmental Engineering, University of Genova, via Montallegro 1, 16145 Genova, Italy
M. TOFFOLON
Affiliation:
Department of Civil and Environmental Engineering, University of Trento, via Mesiano 77, 38100 Trento, Italy
*
Email address for correspondence: nicoletta.tambroni@unige.it

Abstract

Do tidal channels have a characteristic length? Given the sediment characteristics, the inlet conditions and the degree of channel convergence, can we predict it? And how is this length affected by the presence of tidal flats adjacent to the channel? We answer the above questions on the basis of a fully analytical treatment, appropriate for the short channels typically observed in coastal wetlands. The equilibrium length of non-convergent tidal channels is found to be proportional to the critical flow speed for channel erosion. Channel convergence causes concavity of the bed profile. Tidal flats shorten equilibrium channels significantly. Laboratory and field observations substantiate our findings.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

D'Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. 2009 On the tidal prism – channel area relations, J. Geophys. Res., doi:10.1029/2008JF001243 (in press).CrossRefGoogle Scholar
Engelund, F. & Hansen, E. 1967 A monograph on sediment transport in alluvial streams. Danish Tech. Press, Copenhagen.Google Scholar
Exner, F. M. 1925 Uber die wechselwirkung zwischen wasser und geschiebe in flussen. Acad. Wissenscaften Wien 134, 165180.Google Scholar
Friedrichs, C. T. 1995 Stability, shear stess and equilibrium cross-sectional geometry of sheltered tidal channels. J. Coas. Res. 4, 10621074.Google Scholar
Friedrichs, C. T. & Aubrey, D. G. 1994 Tidal propagation in strongly convergent channels. J. Geophys. Res. 99 (C2), 33213336.CrossRefGoogle Scholar
Friedrichs, C. T. & Aubrey, D. G. 1996 Uniform bottom shear stress and equilibrium hypsometry of intertidal flats. In Mixing in Estuaries and Coastal Seas (ed. Pattiaratchi, C.), Coastal and Estuarine Studies, vol. 50, pp. 405429. American Geophysical Union.CrossRefGoogle Scholar
Jarret, J. T. 1976 Tidal prism-inlet area relationships. J. Waterways Harbors Div. ASCE 95, 4352.Google Scholar
Lanzoni, S. & Seminara, G. 2002 Long-term evolution and morphodynamic equilibrium of tidal channels. J. Geophys. Res. 107 (C1), 3001, doi:10.1029/2000JC000468.Google Scholar
Marchi, E. 1990 Sulla stabilità delle bocche lagunari a marea. Rend. Fis. Acc. Lincei 9, 137150.CrossRefGoogle Scholar
Nayfeh, A. 1973 In Perturbation Methods (ed. Riffert, H. & Herold, H.). John Wiley and Sons.Google Scholar
Nichols, M. M. & Boon, J. D. 1994 Sediment transport processes in coastal lagoons. In Coastal Lagoon Processes (ed. Kjerfve, B.), vol. 60, pp. 157209. Elsevier Science.CrossRefGoogle Scholar
O'Brien, M. P. 1969 Equilibrium flow areas of inlets on sandy coasts. J. Waterways Harbors Div. ASCE 95, 4352.CrossRefGoogle Scholar
Parker, G., Klingeman, P. C. & McLean, D. G. 1982 Bedload and size distribution in paved gravel-bed streams. J. Hydraul. Div. 108 HY4, 544571.CrossRefGoogle Scholar
Pritchard, D. & Hogg, A. 2003 Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents. J. Geophys. Res. 108 (C10), 3313, doi:10.1029/2002JC001570.Google Scholar
Pritchard, D., Hogg, A. J. & Roberts, W. 2002 Morphological modelling of intertidal mudflats: the role of cross-shore tidal currents. Cont. Shelf Res. 22 (11–13), 18871895.CrossRefGoogle Scholar
Schuttelaars, H. M. & de Swart, H. E. 1996 An idealized long term morphodynamic model of a tidal embayment. Eur. J. Mech. B/Fluids 15, 5580.Google Scholar
Seminara, G. & Tubino, M. 2001 Sand bars in tidal channels. Part 1. Free bars. J. Fluid Mech. 440, 49–17.CrossRefGoogle Scholar
Solari, L., Seminara, G., Lanzoni, S., Marani, M. & Rinaldo, A. 2002 Sand bars in tidal channels. Part 2. Tidal meanders. J. Fluid Mech. 451, 203238.CrossRefGoogle Scholar
de Swart, H. E. & Zimmermann, J. T. F. 2009 Morphodynamics of tidal inlet systems. Annu. Rev. Fluid Mech. 41, 203229.CrossRefGoogle Scholar
Tambroni, N., Bolla, P. M. & Seminara, G. 2005 Laboratory observations of the morphodynamic evolution of tidal channels and tidal inlets. J. Geophys. Res. 110, F04009, doi:10.1029/2004JF000243.Google Scholar
Tambroni, N. & Seminara, G. 2009 On the theoretical basis of O'Brien-Jarret-Marchi law for tidal inlets and tidal channels. In Proceedings of the 6th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, 21–25 September 2009 (ed. Vionnet, , Garcia, M. H., Latrubesse, E. M. & Perillo, G. M. E.), Santa Fe, Argentina, C. A. 1, pp. 329335, Taylor & Francis/Balkema.Google Scholar
Todeschini, I., Toffolon, M. & Tubino, M. 2008 Long-term morphological evolution of funnel-shape tide-dominated estuaries. J. Geophys. Res. 113, C05005, doi:10.1029/2007JC004094.Google Scholar
Waeles, B., Le Hir, P. & Jacinto, R. S. 2004 Modelisation morphodynamique cross-shore d un estran vaseux. Comptes Rendus Geosci. 336, 10251033.CrossRefGoogle Scholar