Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T07:31:00.575Z Has data issue: false hasContentIssue false

Miscible porous media displacements driven by non-vertical injection wells

Published online by Cambridge University Press:  30 June 2008

E. UPCHURCH
Affiliation:
Chevron International Exploration & Production, PO Box 5905, Belair, TX 77402-5095, USA
E. MEIBURG*
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
*
Author to whom correspondence should be addressed.

Abstract

High-resolution simulations are employed to identify and analyse the mechanisms dominating miscible porous media displacements generated by inclined injection wells. Compared to vertical injection wells, significant differences are observed that strongly influence breakthrough times and recovery rates. Constant density and viscosity displacements, for which the velocity field is potential in nature, demonstrate the existence of pronounced flow non-uniformities, due to the interaction of the inclined well with the reservoir boundaries. These non-uniformities deform the fronts during the initial displacement stages.

In the presence of a viscosity difference, the non-uniformities of the potential flow field result in a focusing of the fingering instability. If the fluids also have different densities, a gravity tongue will reinforce the dominant finger along one front, while a gravitational instability leads to the disintegration of the dominant finger along the other front. Hence, the two fronts emerging from the inclined injection well usually evolve very differently from each other for variable density and viscosity displacements.

For inclined injection wells and sufficiently large mobility ratios, gravity tongues are seen to evolve dendritically for an intermediate range of density contrasts. While mild gravitational forces are necessary to create the gravity tongue in the first place, large density differences will suppress the growth of the dendritic side branches. Since the dendritic branches appear along the side of the gravity tongue that should be stable according to traditional stability criteria, it can be concluded that the tip region plays a crucial role in their formation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bacri, J. C., Rakotomalala, N., Salin, D. & Woumeni, R. 1992 Miscible viscous fingering: Experiments versus continuum approach. Phys. Fluids A 4, 1611.CrossRefGoogle Scholar
Bacri, J. C., Salin, D. & Woumeni, R. 1991 Three-dimensional miscible viscous fingering in porous media. Phys. Rev. Lett. 67, 2005.CrossRefGoogle ScholarPubMed
Bilhartz, H. L., Charlson, G. S., Stalkup, F. I. & Miller, C. C. 1978 A method of projecting full-scale performance of CO2 flooding in the Willard Unit. SPE AIME 5, 149.Google Scholar
Blackwell, R. J., Rayne, J. R. & Terry, W. M. 1959 Factors influencing the efficiency of miscible displacement. Pet. Trans. AIME 216, 1.Google Scholar
Camhi, E., Meiburg, E. & Ruith, M. 2000 Miscible rectilinear displacements with gravity override. Part 2. Heterogeneous porous media. J. Fluid Mech. 420, 259.CrossRefGoogle Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.CrossRefGoogle Scholar
Chen, C.-Y. & Meiburg, E. 1996 Miscible displacements in capillary tubes. Part 2. Numerical simulations. J. Fluid Mech. 326, 57.CrossRefGoogle Scholar
Chen, C.-Y. & Meiburg, E. 1998 a Miscible porous media displacements in the quarter five-spot configuration. Part 1. The homogeneous case. J. Fluid Mech. 371, 233.CrossRefGoogle Scholar
Chen, C.-Y. & Meiburg, E. 1998 b Miscible porous media displacements in the quarter five-spot configuration. Part 2. Effect of heterogeneities. J. Fluid Mech. 371, 269.CrossRefGoogle Scholar
Chouke, R., van Meurs, P. & vander Poel, C. 1959 The instability of slow, immiscible, viscous liquid–liquid displacements in permeable media. Trans. AIME 216, 188.CrossRefGoogle Scholar
Christie, M. A. 1989 High-resolution simulation of unstable flows in porous media. SPE Res. Engng 4, 297.CrossRefGoogle Scholar
Christie, M. A. & Bond, D. J. 1986 Detailed simulation of unstable processes in miscible flooding. SPE/DOE Paper 14896.Google Scholar
Christie, M. A., Jones, A. D. W. & Muggeridge, A. H. 1990 Comparison between laboratory experiments and detailed simulations of unstable miscible displacement influenced by gravity. In North Sea Oil and Gas Reservoirs II. Graham and Trotman.Google Scholar
Coskuner, G. & Bentsen, R. G. 1990 An extended theory to predict the onset of viscous instabilities for miscible displacements in porous media. Trans. Por. Med. 5, 473.CrossRefGoogle Scholar
Couder, Y., Cardoso, O., Dupuy, D., Tavernier, P. & Thom, W. 1986 a Dendritic growth in the Saffman–Taylor experiment. Europhys. Lett. 2, 437.CrossRefGoogle Scholar
Couder, Y., Gerard, N. & Rabaud, M. 1986 b Narrow fingers in the Saffman–Taylor instability. Phys. Rev. A 34, 5175.CrossRefGoogle ScholarPubMed
De Josselin De Jong, G. 1960 Singularity distributions for the analysis of multiple-fluid flow through porous media. J. Geophys. Res. 65, 3739.CrossRefGoogle Scholar
De Wit, A. & Homsy, G. M. 1999 Nonlinear interactions of chemical reactions and viscous fingering in porous media. Phys. Fluids 11, 949.CrossRefGoogle Scholar
Gardner, J. W. & Ypma, J. G. J. 1984 An investigation of phase behavior/macroscopic-bypassing interaction in CO2 flooding. SPE J. 24, 508.Google Scholar
Heller, J. P. 1963 The interpretation of model experiments for the displacement of fluids through porous media. AIChE J. 9, 452.CrossRefGoogle Scholar
Hickernell, J. F. & Yortsos, Y. C. 1986 Linear stability of miscible displacement processes in porous media in the absence of dispersion. Stud. Appl. Math. 74, 93.CrossRefGoogle Scholar
Hill, S. 1952 Channelling in packed columns. Chem. Engng Sci. 1, 247.CrossRefGoogle Scholar
Homsy, G. M. 1987 Viscous Fingering in Porous Media. Ann. Rev. Fluid Mech. 19, 271.CrossRefGoogle Scholar
Howard, G. C. & Fast, C. R. 1970 Hydraulic Fracturing, Monograph 2. SPE, Richardson, TX.Google Scholar
Kopf-Sill, A. R. & Homsy, G. M. 1987 Narrow fingers in a Hele–Shaw cell. Phys. Fluids 30, 2607.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lele, S. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16.CrossRefGoogle Scholar
Manickam, O. & Homsy, G. M. 1993 Stability of miscible displacements in porous media with nonmonotonic viscosity profiles. Phys. Fluids 5, 1356.CrossRefGoogle Scholar
Manickam, O. & Homsy, G. M. 1994 Simulation of viscous fingering in miscible displacements with nonmonotonic viscosity profiles. Phys. Fluids 6, 95.CrossRefGoogle Scholar
Manickam, O. & Homsy, G. M. 1995 Fingering instabilities in vertical miscible displacement flows in porous media. J. Fluid Mech. 288, 75.CrossRefGoogle Scholar
Maxworthy, T. 1986 Bubble formation, motion and interaction in a Hele–Shaw cell. J. Fluid Mech. 173, 95.CrossRefGoogle Scholar
Meiburg, E. & Homsy, G. M. 1988 Nonlinear unstable viscous fingers in Hele–Shaw flows. II. Numerical simulation. Phys. Fluids 31, 429.CrossRefGoogle Scholar
Pankiewitz, C. & Meiburg, E. 1999 Miscible porous media displacements in the quarter five-spot configuration. Part 3. Nonmonotonic viscosity profiles. J. Fluid Mech. 388, 171.CrossRefGoogle Scholar
Peaceman, D. W. & Rachford, H. H. 1955 The numerical solution of parabolic and elliptic differential equations. SIAM J. 3, 28.Google Scholar
Peaceman, D. W. & Rachford, H. H. 1962 Numerical calculation of multi-dimensional miscible displacement. Soc. Pet. Engng. J. 24, 327.CrossRefGoogle Scholar
Perkins, T. K. & Johnston, O. C. 1963 A review of diffusion and dispersion in porous media. SPE J. 3, 195.Google Scholar
Petitjeans, P., Chen, C.-Y., Meiburg, E. & Maxworthy, T. 1999 Miscible quarter five-spot displacements in a Hele–Shaw cell and the role of flow-induced dispersion. Phys. Fluids 11, 1705.CrossRefGoogle Scholar
Petitjeans, P. & Maxworthy, T. 1996 Miscible displacements in capillary tubes. Part 1. Experiments. J. Fluid Mech. 326, 37.CrossRefGoogle Scholar
van der Poel, C. 1962 SPE J. Trans. AIME 225, 317.Google Scholar
Riaz, A. & Meiburg, E. 2003 a Radial source flows in porous media: Linear stability analysis of axial and helical perturbations in miscible displacements. Phys. Fluids 19, 938.CrossRefGoogle Scholar
Riaz, A. & Meiburg, E. 2003 b Three-dimensional miscible displacement simulations in homogene ous porous media with gravity override. J. Fluid Mech. 494, 95.CrossRefGoogle Scholar
Riaz, A. & Meiburg, E. 2004 Vorticity interaction mechanisms in variable viscosity, heterogeneous miscible displacements with and without density contrast. J. Fluid Mech. 517, 1.CrossRefGoogle Scholar
Riaz, A., Pankiewitz, C. & Meiburg, E. 2004 Linear stability of radial displacements in porous media: Influence of velocity-induced dispersion and concentration-dependent diffusion. Phys. Fluids 16, 3592.CrossRefGoogle Scholar
Rogerson, A. & Meiburg, E. 1993 a Numerical simulation of miscible displacement processes in porous media flows under gravity. Phys. Fluids A 5, 2644.CrossRefGoogle Scholar
Rogerson, A. & Meiburg, E. 1993 b Shear stabilization of miscible displacement processes in porous media. Phys. Fluids A 5, 1344.CrossRefGoogle Scholar
Ruith, M. & Meiburg, E. 2000 Miscible rectilinear displacements with gravity override. Part 1. Homogeneous porous medium. J. Fluid Mech. 420, 225.CrossRefGoogle Scholar
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous fluid. Proc. R. Soc. Lond. A 245, 312.Google Scholar
Stalkup, F. I. 1983 Miscible Displacement. SPE, Richardson, TX.Google Scholar
Taber, J. J. & Seright, R. S. 1992 Horizontal injection and production wells for EOR or waterflooding. SPE Paper 23952.CrossRefGoogle Scholar
Tan, C. T. & Homsy, G. M. 1986 Stability of miscible displacements in porous media: Rectilinear flow. Phys. Fluids 29, 3549.CrossRefGoogle Scholar
Tan, C. T. & Homsy, G. M. 1987 Stability of miscible displacements in porous media: Radial source flow. Phys. Fluids 30, 1239.CrossRefGoogle Scholar
Tan, C. T. & Homsy, G. M. 1988 Simulation of nonlinear viscous fingering in miscible displacement. Phys. Fluids 31, 1330.CrossRefGoogle Scholar
Tan, C. T. & Homsy, G. M. 1992 Viscous fingering with permeability heterogeneity. Phys. Fluids A 4, 1099.CrossRefGoogle Scholar
Taylor, G. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A, 219, 186.Google Scholar
Tchelepi, H. A. 1994 Viscous fingering, gravity segregation and permeability heterogeneity in two-dimensional and three dimensional flows. PhD thesis, Department of Petroleum Engineering, Stanford University.Google Scholar
Tryggvason, G. & Aref, H. 1983 Numerical experiments on Hele Shaw flow with a sharp interface. J. Fluid Mech. 136, 1.CrossRefGoogle Scholar
Upchurch, E. R. 2005 The effects of injection source inclination, stratified permeability heterogeneity and permeability anisotropy on the miscible flooding of porous media. PhD thesis, University of Southern California, Los Angeles, CA.Google Scholar
Wright, C. A. & Conant, R. A. 1995 Hydraulic fracture reorientation in primary and secondary recovery from low-permeability reservoirs. SPE Paper 30484.CrossRefGoogle Scholar
Yang, Z. M. & Yortsos, Y. C. 1998 Effect of no-flow boundaries on viscous fingering in porous media of large aspect ratio. SPE J. 3, 285.CrossRefGoogle Scholar
Yortsos, Y. C. 1990 Instabilities in displacement processes in porous media. J. Phys. Condens. Matter 2.CrossRefGoogle Scholar
Yortsos, Y. C. & Zeybek, M. 1988 Dispersion driven instability in miscible displacement in porous media. Phys. Fluids. 31, 3511.CrossRefGoogle Scholar
Zimmerman, W. B. & Homsy, G. M. 1991 Nonlinear viscous fingering in miscible displacement with anisotropic dispersion. Phys. Fluids A 3, 1859.CrossRefGoogle Scholar
Zimmerman, W. B. & Homsy, G. M. 1992 a Three-dimensional viscous fingering: A numerical study. Phys. Fluids A 4, 1901.CrossRefGoogle Scholar
Zimmerman, W. B. & Homsy, G. M. 1992 b Viscous fingering in miscible displacements: Unification of effects of viscosity contrast, anisotropic dispersion, and velocity dependence of dispersion on nonlinear propagation. Phys. Fluids A 4, 2348.CrossRefGoogle Scholar