Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T05:50:42.791Z Has data issue: false hasContentIssue false

Nonlinear mode interactions in a counter-rotating split-cylinder flow

Published online by Cambridge University Press:  10 March 2017

Paloma Gutierrez-Castillo
Affiliation:
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
Juan M. Lopez*
Affiliation:
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
*
Email address for correspondence: juan.m.lopez@asu.edu

Abstract

The flow in a split cylinder with each half in exact counter rotation is studied numerically. The exact counter rotation, quantified by a Reynolds number $\mathit{Re}$ based on the rotation rate and radius, imparts the system with an $O(2)$ symmetry (invariance to azimuthal rotations as well as to an involution consisting of a reflection about the mid-plane composed with a reflection about any meridional plane). The $O(2)$ symmetric basic state is dominated by a shear layer at the mid-plane separating the two counter-rotating bodies of fluid, created by the opposite-signed vortex lines emanating from the two endwalls being bent to meet at the split in the sidewall. With the exact counter rotation, the additional involution symmetry allows for steady non-axisymmetric states, that exist as a group orbit. Different members of the group simply correspond to different azimuthal orientations of the same flow structure. Steady states with azimuthal wavenumber $m$ (the value of $m$ depending on the cylinder aspect ratio $\unicode[STIX]{x1D6E4}$) are the primary modes of instability as $\mathit{Re}$ and $\unicode[STIX]{x1D6E4}$ are varied. Mode competition between different steady states ensues, and further bifurcations lead to a variety of different time-dependent states, including rotating waves, direction-reversing waves, as well as a number of slow–fast pulse waves with a variety of spatio-temporal symmetries. Further from the primary instabilities, the competition between the vortex lines from each half-cylinder settles on either a $m=2$ steady state or a limit cycle state with a half-period-flip spatio-temporal symmetry. By computing in symmetric subspaces as well as in the full space, we are able to unravel many details of the dynamics involved.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abshagen, J., Heise, M., Hoffmann, Ch. & Pfister, G. 2008 Direction reversal of a rotating wave in Taylor–Couette flow. J. Fluid Mech. 607, 199208.CrossRefGoogle Scholar
Armbruster, D., Guckenheimer, J. & Holmes, P. 1988 Heteroclinic cycles and modulated travelling waves in systems with O (2) symmetry. Physica D 29, 257282.Google Scholar
Batchelor, G. K. 1951 Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech. Appl. Maths 4, 2941.Google Scholar
Blackburn, H. M. & Lopez, J. M. 2000 Symmetry breaking of the flow in a cylinder driven by a rotating end wall. Phys. Fluids 12, 26982701.Google Scholar
Blackburn, H. M. & Lopez, J. M. 2002 Modulated rotating waves in an enclosed swirling flow. J. Fluid Mech. 465, 3358.Google Scholar
Bourgoin, M., Marié, L., Pétrélis, F., Gasquet, C., Guigon, A., Luciani, J.-B., Moulin, M., Namer, F., Burguete, J., Chiffaudel, A. et al. 2002 Magnetohydrodynamics measurements in the von Kármán sodium experiment. Phys. Fluids 14, 30463058.Google Scholar
Coullet, P. & Iooss, G. 1990 Instabilities of one-dimensional cellular patterns. Phys. Rev. Lett. 64, 866869.Google Scholar
Crawford, J. D & Knobloch, E. 1991 Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annu. Rev. Fluid Mech. 23, 341387.Google Scholar
Crespo del Arco, E., Sánchez-Álvarez, J. J., Serre, E., de la Torre, A. & Burguete, J. 2009 Numerical and experimental study of the time-dependent states and the slow dynamics in a von Kármán swirling flow. Geophys. Astrophys. Fluid Dyn. 103, 163177.Google Scholar
Dangelmayr, G. 1986 Steady-state mode interactions in the presence of O (2)-symmetry. Dyn. Stab. Syst. 1, 159185.Google Scholar
Fauve, S., Douady, S. & Thual, O. 1991 Drift instabilities of cellular patterns. J. Phys. II 1, 311322.Google Scholar
Gauthier, G., Gondret, P., Moisy, F. & Rabaud, M. 2002 Instabilities in the flow between co- and counter-rotating disks. J. Fluid Mech. 473, 121.Google Scholar
Giesecke, A., Stefani, F. & Burguete, J. 2012 Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Phys. Rev. E 86, 066303.Google ScholarPubMed
Gutierrez-Castillo, P. & Lopez, J. M. 2015 Instabilities of the sidewall boundary layer in a rapidly rotating split cylinder. Eur. J. Mech. (B/Fluids) 52, 7684.Google Scholar
Higuera, M., Riecke, H. & Silber, M. 2004 Near-resonant steady mode interaction: periodic, quasi-periodic, and localized patterns. SIAM J. Appl. Dyn. Syst. 3, 463502.Google Scholar
Jones, C. A. & Proctor, M. R. E. 1987 Strong spatial resonance and travelling waves in Bénard convection. Phys. Rev. A 121, 224228.Google Scholar
Kness, M., Tuckerman, L. S. & Barkley, D. 1992 Symmetry-breaking bifurcations in one-dimensional excitable media. Phys. Rev. A 46, 50545062.CrossRefGoogle ScholarPubMed
Knobloch, E. 1996 Symmetry and instability in rotating hydrodynamic and magnetohydrodynamic flows. Phys. Fluids 8, 14461454.CrossRefGoogle Scholar
Krupa, M. 1990 Bifurcations of relative equilibria. SIAM J. Math. Anal. 21, 14531486.CrossRefGoogle Scholar
Landsberg, A. S. & Knobloch, E. 1991 Direction-reversing traveling waves. Phys. Rev. A 159, 1720.Google Scholar
Launder, B., Poncet, S. & Serre, E. 2010 Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu. Rev. Fluid Mech. 42, 229248.Google Scholar
Lopez, J. M. 1998 Characteristics of endwall and sidewall boundary layers in a rotating cylinder with a differentially rotating endwall. J. Fluid Mech. 359, 4979.Google Scholar
Lopez, J. M. 2006 Rotating and modulated rotating waves in transitions of an enclosed swirling flow. J. Fluid Mech. 553, 323346.CrossRefGoogle Scholar
Lopez, J. M. & Gutierrez-Castillo, P. 2016 Three-dimensional instabilities and inertial waves in a rapidly rotating split-cylinder flow. J. Fluid Mech. 800, 666687.Google Scholar
Lopez, J. M., Hart, J., Marques, F., Kittelman, S. & Shen, J. 2002 Instability and mode interactions in a differentailly-driven rotating cylinder. J. Fluid Mech. 462, 383409.Google Scholar
Lopez, J. M. & Marques, F. 2004 Mode competition between rotating waves in a swirling flow with reflection symmetry. J. Fluid Mech. 507, 265288.Google Scholar
Lopez, J. M. & Marques, F. 2009 Centrifugal effects in rotating convection: nonlinear dynamics. J. Fluid Mech. 628, 269297.Google Scholar
Marques, F., Gelfgat, A. Yu. & Lopez, J. M. 2003 A tangent double Hopf bifurcation in a differentially rotating cylinder flow. Phys. Rev. E 68, 016310.Google Scholar
Marques, F., Meseguer, A., Lopez, J. M., Pacheco, J. R. & Lopez, J. M. 2013 Bifurcations with imperfect SO (2) symmetry and pinning of rotating waves. Proc. R. Soc. Lond. A 469, 20120348.Google Scholar
Mercader, I., Batiste, O. & Alonso, A. 2010 An efficient spectral code for incompressible flows in cylindrical geometries. Comput. Fluids 39, 215224.CrossRefGoogle Scholar
Moisy, F., Doaré, O., Pasutto, T., Daube, O. & Rabaud, M. 2004 Experimental and numerical study of the shear layer instability between two counter-rotating disks. J. Fluid Mech. 507, 175202.Google Scholar
Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, Ph., Pinton, J.-F., Volk, R., Fauve, S., Mordant, N., Pétrélis, F. et al. 2007 Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98, 044502.Google Scholar
Nore, C., Moisy, F. & Quartier, L. 2005 Experimental observation of near-heteroclinic cycles in the von Kármán swirling flow. Phys. Fluids 17, 064103.Google Scholar
Nore, C., Tartar, M., Daube, O. & Tuckerman, L. S. 2004 Survey of instability thresholds of flow between exactly counter-rotating disks. J. Fluid Mech. 511, 4565.CrossRefGoogle Scholar
Nore, C., Tuckerman, L. S., Daube, O. & Xin, S. 2003 The 1 : 2 mode interaction in exactly counter-rotating von Kármán swirling flow. J. Fluid Mech. 477, 5188.Google Scholar
Nore, C., Witkowski, L. M., Foucault, E., Pécheux, J., Daube, O. & Le Quéré, P. 2006 Competition between axisymmetric and three-dimensional patterns between exactly counter-rotating disks. Phys. Fluids 18, 054102.Google Scholar
Pacheco, J. R., Lopez, J. M. & Marques, F. 2011 Pinning of rotating waves to defects in finite Taylor–Couette flow. J. Fluid Mech. 666, 254272.Google Scholar
Porter, J. & Knobloch, E. 2001 New type of complex dynamics in the 1 : 2 spatial resonance. Physica D 159, 125154.Google Scholar
Ravelet, F., Marie, L., Chiffaudel, A. & Daviaud, F. 2004 Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. Phys. Rev. Lett. 93, 164501.Google Scholar
Ravelet, F., Monchaux, R., Aumaître, S., Chiffaudel, A., Daviaud, F., Dubrulle, B., Bourgoin, M., Odier, Ph., Plihon, N., Pinton, J.-P. et al. 2008 Chaotic dynamos generated by a turbulent flow of liquid sodium. Phys. Rev. Lett. 101, 074502.Google Scholar
Rott, N. & Lewellen, W. S. 1966 Boundary layers and their interactions in rotating flows. Prog. Aerosp. Sci. 7, 111144.Google Scholar
Stewartson, K. 1953 On the flow between two rotating coaxial disks. Proc. Camb. Phil. Soc. 49, 333341.Google Scholar
Strogratz, S. H. 1994 Nonlinear Dynamics and Chaos. Addison-Wesley.Google Scholar
de la Torre, A. & Burguete, J. 2007 Slow dynamics in a turbulent von Kármán swirling flow. Phys. Rev. Lett. 99, 054101.Google Scholar
Zandbergen, P. J. & Dijkstra, D. 1987 Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19, 465491.CrossRefGoogle Scholar

Gutierrez-Castillo supplementary movie

Animation of RW state.

Download Gutierrez-Castillo supplementary movie(Video)
Video 4.4 MB

Gutierrez-Castillo supplementary movie

Animation of DRW state.

Download Gutierrez-Castillo supplementary movie(Video)
Video 446.2 KB

Gutierrez-Castillo supplementary movie

Animation of PWs state.

Download Gutierrez-Castillo supplementary movie(Video)
Video 3.9 MB

Gutierrez-Castillo supplementary movie

Animation of PWa at Re=160

Download Gutierrez-Castillo supplementary movie(Video)
Video 5.1 MB

Gutierrez-Castillo supplementary movie

Animation of PWa at Re=175.

Download Gutierrez-Castillo supplementary movie(Video)
Video 2.1 MB

Gutierrez-Castillo supplementary movie

Animation of PWo state.

Download Gutierrez-Castillo supplementary movie(Video)
Video 1.2 MB

Gutierrez-Castillo supplementary movie

Animation of LC state.

Download Gutierrez-Castillo supplementary movie(Video)
Video 2.5 MB