Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T01:23:07.345Z Has data issue: false hasContentIssue false

Numerical and experimental study of the dynamics of axisymmetric slender liquid bridges

Published online by Cambridge University Press:  20 April 2006

José Meseguer
Affiliation:
Laboratorio de Aerodinámica, E.T.S.I. Aeronáuticos, Universidad Politécnica. 28040 Madrid, Spain
Angel Sanz
Affiliation:
Laboratorio de Aerodinámica, E.T.S.I. Aeronáuticos, Universidad Politécnica. 28040 Madrid, Spain

Abstract

A one-dimensional inviscid slice model has been used to study numerically the influence of axial microgravity on the breaking of liquid bridges having a volume close to that of gravitationless minimum volume stability limit. Equilibrium shapes and stability limits have been obtained as well as the dependence of the volume of the two drops formed after breaking on both the length and the volume of the liquid bridge. The breaking process has also been studied experimentally. Good agreement has been found between theory and experiment for neutrally buoyant systems.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bisch, C., Lasek, A. & Rodot, H. 1982 Hydrodynamic behaviour of spherical semi-free liquid volumes in simulated weightlessness. J. Méc. Théorique et Appliquée 1, 165183.Google Scholar
Boucher, E. A. & Evans, M. J. B. 1980 Properties of fluid bridges between solids in a gravitational field. J. Colloid Interface Sci. 75, 409418.Google Scholar
Brown, R. A. & Scriven, L. E. 1980 The shapes and stability of captive rotating drops. Phil. Trans. R. Soc. Lond. A 297, 5179.Google Scholar
Carruthers, J. R. & Grasso, M. 1972 The stabilities of floating liquid zones in simulated zero gravity. J. Cryst. Growth 13/14, 611614.Google Scholar
Chesters, A. K. 1977 An analytical solution for the profile and volume of a small drop or bubble symmetrical about a vertical axis. J. Fluid Mech. 81, 609626.Google Scholar
Coriell, S. R. & Cordes, M. R. 1977 Theory of molten zones shape and stability. J. Cryst. Growth 42, 466472.Google Scholar
Coriell, S. R., Hardy, S. C. & Cordes, M. R. 1977 Stability of liquid zones. J. Colloid Interface Sci. 60, 126136.Google Scholar
Cram, L. E. 1983 A numerical model of droplet formation. CSIRO Div. Appl. Phys., Sydney, Australia 2070.
Da Riva, I. 1981 Stability of liquid bridges. In Applications of Space Technology (ed. L. G. Napolitano), pp. 6980. Pergamon.
Da Riva, I. & Manzano, D. R. 1981 Impulsive motions of the floating zone. PCH Physicochemical Hydrodynamics 2, 165176.Google Scholar
Da Riva, I. & Martinez, I. 1979 Floating zone stability (Exp. 1-ES-331). In Material Sciences in Space ESA SP-142, pp. 6773. Paris: ESA.
Da Riva, I. & Meseguer, J. 1978 On the structure of the floating zone in melting. Acta Astronaut. 5, 637653.Google Scholar
Elagin, M. P., Lebedev, A. P. & Tsmelev, A. V. 1982 Laboratory modeling of the stability and dynamics of free liquid zones. In Hydromechanics and Heat and Mass Transfer in Zero-Gravity (in Russian) (ed. V. S. Avduevskii & V. I. Polezhaev), pp. 2433. Moscow: Nauka.
Erle, M. A., Gillette, R. D. & Dyson, D. C. 1970 Stability of interfaces of revolution with constant surface tension. The case of catenoid. Chem. Engng J. 1, 97109.Google Scholar
Gillette, R. D. & Dyson, R. C. 1971 Stability of fluid interfaces of revolution between equal solid circular plates. Chem. Engng J. 2, 4454.Google Scholar
Harriot, G. M. & Brown, R. A. 1983 Flow in a differentially rotated cylindrical drop at low Reynolds number. J. Fluid Mech. 126, 269285.Google Scholar
Haynes, J. M. 1970 Stability of a fluid cylinder. J. Colloid Interface Sci. 32, 652654.Google Scholar
Keller, J. B. & Miksis, M. J. 1983 Surface tension driven flows. SIAM J. Appl. Maths 43–2, 268277.Google Scholar
Lee, H. C. 1974 Drop formation in a liquid jet. IBM J. Res. Dev. 18, 364369.Google Scholar
Martinez, I. 1976 Floating zone under reduced gravity. Axisymmetric equilibrium shapes. In Material Sciences in Space ESA SP-114, pp. 277282. Paris: ESA.
Martinez, I. 1978a Hidrostática de la zona flotante. Tesis doctoral, Universidad Politécnica de Madrid.
Martinez, I. 1978b Floating zones. Equilibrium shapes and stability criteria. In COSPAR: Space Research Vol. xviii (ed. M. J. Rycroft & A. C. Strickland), pp. 519522. Pergamon.
Martinez, I. 1983 Stability of axisymmetric liquid bridges. In Material Sciences under Microgravity ESA SP-191, pp. 267273. Paris: ESA.
Martinez, I. & Rivas, D. 1982 Plateau Tank Facility for simulation of Spacelab experiments. Acta Astronaut. 9, 339342.Google Scholar
Mason, G. C. 1970 An experimental determination of the stable length of cylindrical liquid bubbles. J. Colloid Interface Sci. 32, 172176.Google Scholar
Meseguer, J. 1983a The breaking of axisymmetric liquid bridges. J. Fluid Mech. 130, 123151.Google Scholar
Meseguer, J. 1983b The influence of axial microgravity on the breakage of axisymmetric liquid bridges. J. Cryst. Growth 62, 577586.Google Scholar
Meseguer, J. 1984 Stability of slender, axisymmetric liquid bridges between unequal disks. J. Cryst. Growth 67, 141143.Google Scholar
Meseguer, J., Sanz, A. & Rivas, D. 1983 The breaking of axisymmetric non-cylindrical liquid bridges. In Materials Sciences under Microgravity ESA SP-191, pp. 261265. Paris: ESA.
Pimbley, W. T. 1976 Drop formation from a liquid jet: a linear one-dimensional analysis considered as a boundary value problem. IBM J. Res. Dev. 20, 148156.Google Scholar
Pimbley, W. T. & Lee, H. C. 1977 Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 2130.Google Scholar
Rivas, D. & Meseguer, J. 1984 One-dimensional, self-similar solution of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 138, 417429.Google Scholar
Rodot, H., Bisch, C. & Lasek, A. 1979 Zero gravity simulation of liquids in contact with a solid surface. Acta Astronaut. 6, 10831092.Google Scholar
Sanz, A. 1983 Comportamiento de las zonas liquidas flotantes en microgravedad simulada. Tesis doctoral, Universidad Politécnica de Madrid.
Sanz, A. & Martinez, I. 1983 Minimum volume for a liquid bridge between equal disks. J. Colloid Interface Sci. 93, 235240.Google Scholar
Slobozhanin, L. A. 1982 Problems on the stability of liquids in equilibrium, appearing in spatial technology. In Hydromechanics and Heat and Mass Transfer in Zero-Gravity (in Russian) (ed. V. S. Avduevskii & V. I. Polezhaev), pp. 924. Moscow: Nauka.
Tagg, R., Cammack, L., Cronquist, A. & Wang, T. G. 1980 Rotating liquid drops: Plateau's experiment revisited. JPL 900-954, Jet Propulsion Laboratory, Caltech, Pasadena, California.
Ungar, L. H. & Brown, R. A. 1982 The dependence of the shape and stability of captive rotating drops on multiple parameters. Phil. Trans. R. Soc. Lond. A 306, 347370.Google Scholar
Vega, J. M. & Perales, J. M. 1983 Almost cylindrical isorotating liquid bridges for small Bond numbers. In Materials Sciences under Microgravity ES A SP-191, pp. 247252. Paris: ESA.