Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T05:50:09.107Z Has data issue: false hasContentIssue false

A predictive quasi-steady model of aerodynamic loads on flapping wings

Published online by Cambridge University Press:  13 July 2016

Q. Wang*
Affiliation:
Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft2628 CD, The Netherlands
J. F. L. Goosen
Affiliation:
Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft2628 CD, The Netherlands
F. van Keulen
Affiliation:
Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft2628 CD, The Netherlands
*
Email address for correspondence: q.wang-3@tudelft.nl

Abstract

Quasi-steady aerodynamic models play an important role in evaluating aerodynamic performance and conducting design and optimization of flapping wings. The kinematics of flapping wings is generally a resultant motion of wing translation (yaw) and rotation (pitch and roll). Most quasi-steady models are aimed at predicting the lift and thrust generation of flapping wings with prescribed kinematics. Nevertheless, it is insufficient to limit flapping wings to prescribed kinematics only since passive pitching motion is widely observed in natural flapping flights and preferred for the wing design of flapping wing micro air vehicles (FWMAVs). In addition to the aerodynamic forces, an accurate estimation of the aerodynamic torque about the pitching axis is required to study the passive pitching motion of flapping flights. The unsteadiness arising from the wing’s rotation complicates the estimation of the centre of pressure (CP) and the aerodynamic torque within the context of quasi-steady analysis. Although there are a few attempts in literature to model the torque analytically, the involved problems are still not completely solved. In this work, we present an analytical quasi-steady model by including four aerodynamic loading terms. The loads result from the wings translation, rotation, their coupling as well as the added-mass effect. The necessity of including all the four terms in a quasi-steady model in order to predict both the aerodynamic force and torque is demonstrated. Validations indicate a good accuracy of predicting the CP, the aerodynamic loads and the passive pitching motion for various Reynolds numbers. Moreover, compared to the existing quasi-steady models, the presented model does not rely on any empirical parameters and thus is more predictive, which enables application to the shape and kinematics optimization of flapping wings.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, A., Pesavento, U. & Wang, Z. J. 2005 Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 6590.Google Scholar
Anderson, J. 2010 Fundamentals of Aerodynamics. McGraw-Hill Education.Google Scholar
Ansari, S. A.2004 A nonlinear, unsteady, aerodynamic model for insect-like flapping wings in the hover with micro air vehicle applications. PhD thesis, Cranfield University.Google Scholar
Ansari, S. A., Bikowski, R. & Knowles, K. 2006 Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog. Aerosp. Sci. 42 (2), 129172.Google Scholar
Bergou, A. J., Xu, S. & Wang, Z. J. 2007 Passive wing pitch reversal in insect flight. J. Fluid Mech. 591, 321337.Google Scholar
Berman, G. J. & Wang, Z. J. 2007 Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582, 153168.Google Scholar
Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412 (6848), 729733.Google Scholar
Bolsman, C. T., Goosen, J. F. L. & van Keulen, F. 2009 Design overview of a resonant wing actuation mechanism for application in flapping wing MAVs. Intl J. Micro Air Veh. 1 (4), 263272.Google Scholar
Brennen, C. E.1982 A review of added mass and fluid inertial forces. Tech. Rep., Naval Civil Engineering Laboratory, Port Hueneme, California.Google Scholar
Chabrier, J. 1822 Essai sur le Vol des Insectes, et Observations. Kessinger Publishing.Google Scholar
de Croon, G. C. H. E., de Clercq, K. M. E., Ruijsink, R., Remes, B. & de Wagter, C. 2009 Design, aerodynamics, and vision-based control of the DelFly. Intl J. Micro Air Veh. 1 (2), 7198.Google Scholar
Dickinson, M. H. & Götz, K. G. 1993 Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Expl Biol. 64, 4564.CrossRefGoogle Scholar
Dickinson, M. H., Lehmann, F. O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.Google Scholar
Dickson, W. B., Straw, A. D., Poelma, C. & Dickinson, M. H. 2006 An integrative model of insect flight control. In Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit, pp. 119. Reno, NV.Google Scholar
Eldredge, J. D., Wang, C. & Ol, M. V. 2009 A computational study of a canonical pitch-up, pitch-down wing maneuver. AIAA Paper 70 (June), 32423250.Google Scholar
Ellington, C. P. 1984a The aerodynamics of hovering insect flight. IV: aeorodynamic mechanisms. Phil. Trans. R. Soc. Lond. B 305 (1122), 79113.Google Scholar
Ellington, C. P. 1984b The aerodynamics of hovering insect flight. V: a vortex theory. Phil. Trans. R. Soc. Lond. B 305 (1122), 115144.Google Scholar
Ellington, C. P. 1999 The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Expl Biol. 202, 34393448.CrossRefGoogle ScholarPubMed
Ellington, C. P., van den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384 (6610), 626630.Google Scholar
Ennos, A. R. 1989 The kinematics and aerodynamics of the free flight of some diptera. J. Expl Biol. 142, 4985.CrossRefGoogle Scholar
Ford, C. W. P. & Babinsky, H. 2014 Impulsively started flat plate circulation. AIAA J. 52 (8), 18001802.Google Scholar
Fung, Y. C. 1993 An Introduction to the Theory of Aeroelasticity. Courier Dover Publications.Google Scholar
Han, J. S., Kim, J. K., Chang, J. W. & Han, J. H. 2015 An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure. Bioinspir. Biomim. 10, 046014.Google Scholar
Harbig, R. R., Sheridan, J. & Thompson, M. C. 2014 The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight. J. Fluid Mech. 751, 71105.Google Scholar
Hoff, W. 1919 Der flug der insekten und der vögel. Naturwissenschaften 7, 159162.Google Scholar
Howell, L. L. 2001 Compliant Mechanisms. John Wiley Sons.Google Scholar
Johansson, L. C., Engel, S., Kelber, A., Heerenbrink, M. K. & Hedenström, A. 2013 Multiple leading edge vortices of unexpected strength in freely flying Hawkmoth. Sci. Rep. 3, 3264.CrossRefGoogle ScholarPubMed
Jones, R. T.1940 The unsteady lift of a wing of finite aspect ratio. Tech. Rep.Google Scholar
Lee, J., Choi, H. & Kim, H. Y. 2015 A scaling law for the lift of hovering insects. J. Fluid Mech. 782, 479490.Google Scholar
Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. 2013 Controlled flight of a biologically inspired, insect-scale robot. Science 340 (6132), 603607.Google Scholar
Nabawy, M. R. A. & Crowther, W. J. 2014 On the quasi-steady aerodynamics of normal hovering flight. Part II: model implementation and evaluation. J. R. Soc. Interface 11 (94), 20131197.Google Scholar
Newman, J. N. 1977 Marine Hydrodynamics. MIT Press.Google Scholar
Osborne, M. F. M. 1951 Aerodynamics of flapping flight with application to insects. J. Expl Biol. 28, 221245.CrossRefGoogle ScholarPubMed
Percin, M. & van Oudheusden, B. W. 2015 Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates. Exp. Fluids 56 (47), 119.Google Scholar
Pitt Ford, C. W. & Babinsky, H. 2013 Lift and the leading-edge vortex. J. Fluid Mech. 720, 280313.Google Scholar
Sane, S. P. 2003 The aerodynamics of insect flight. J. Expl Biol. 206 (23), 41914208.Google Scholar
Sane, S. P. & Dickinson, M. H. 2002 The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Expl Biol. 205 (8), 10871096.CrossRefGoogle Scholar
Schlichting, H. & Truckenbrodt, E. A. 1979 Aerodynamics of the Aeroplane, 2nd edn. McGraw-Hill Higher Education.Google Scholar
Schwab, A. L. & Meijaard, J. P. 2006 How to draw Euler angles and utilize Euler parameters. In Proceeding of the IDETC/CIE ASME 2006 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., pp. 17. Philadelphia, Pennsylvania, USA.Google Scholar
Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C. K., Cesnik, C. E. S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.Google Scholar
Sun, M. 2014 Insect flight dynamics: stability and control. Rev. Mod. Phys. 86 (2), 615646.Google Scholar
Taha, H. E., Hajj, M. R. & Beran, P. S. 2014 State-space representation of the unsteady aerodynamics of flapping flight. Aerosp. Sci. Technol. 34 (1), 111.Google Scholar
Usherwood, J. R. & Ellington, C. P. 2002a The aerodynamics of revolving wings. I: model Hawkmoth wings. J. Expl Biol. 205 (11), 15471564.Google Scholar
Usherwood, J. R. & Ellington, C. P. 2002b The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. J. Expl Biol. 205 (11), 15651576.Google Scholar
Wagner, H. 1925 Über die entstehung des dynamischen auftriebes von tragflügeln. Z. Angew. Math. Mech. 5, 1735.Google Scholar
Walker, P. B.1931 Experiments on the growth of circulation about a wing and an apparatus for measuring fluid motion. Tech. Rep.Google Scholar
Wang, Z. J., Birch, J. M. & Dickinson, M. H. 2004 Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J. Expl Biol. 207 (3), 449460.Google Scholar
Weis-Fogh, T. 1972 Energetics of hovering flight in hummingbirds and in Drosophila. J. Expl Biol. 56, 79104.Google Scholar
Whitney, J. P. & Wood, R. J. 2010 Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 660, 197220.Google Scholar
Xia, X. & Mohseni, K. 2013 Lift evaluation of a two-dimensional pitching flat plate. Phys. Fluids 25 (9), 091901.Google Scholar