Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T12:31:54.776Z Has data issue: false hasContentIssue false

Some experimental observations of secondary motions in a confined vortex flow

Published online by Cambridge University Press:  26 April 2006

Robert A. Granger
Affiliation:
Professor of Mechanical Engineering, US Naval Academy, Annapolis, MD 21402–5042, USA

Abstract

Three decades have passed since vortex breakdown was first identified as a natural fluid flow phenomenon. Three key theories have been proposed to explain the phenomenon: hydrodynamic instability, conjugate states and flow stagnation. Despite a considerable amount of theoretical and experimental investigation, there is still nothing approaching a completely satisfactory theory of vortex breakdown. In addition, there is no agreement on a complete physical description of the structure of vortex breakdown. The present experimental investigation may substantiate a few earlier conjectures. We discuss an experimental finding that might help clarify the phenomenon through the use of flow visualization and laser-Doppler velocimetry. Experimental measurements substantiate earlier measurements and theoretical calculations of the velocity field. The evidence suggests that there is a connection between criticality and instability.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon, J. Fluid Mech. 14, 593Google Scholar
Bossel, H. H. 1969 Vortex breakdown flow field. Phys. Fluids 12, 498.Google Scholar
Cassidy, J. J. & Falvey, H. T. 1970 Observations of unsteady flow arising after vortex breakdown. J. Fluid Mech. 41, 727.Google Scholar
Chanaud, R. C. 1965 Observations of oscillatory motion in certain swirling flows, J. Fluid Mech. 21, 111.Google Scholar
Church, C. R., Snow, J. T. & Agee, E. E. 1977 Tornado vortex simulation at Purdue University. Bull Am. Met. Soc. 58, 900.Google Scholar
Donohue, G. L., McLaughlin, D. K. & Tiederman, W. G. 1972 Turbulence measurements with a laser anemometer measuring individual realizations. ER 72-F-11. School of Mech, & Aero. Engng, OK State University.
Escudier, M. P. 1984 Observations of the flow produced in a cylindrical container by a, rotating endwall. Exps Fluids 2, 189.Google Scholar
Escudier, M. P. 1989 Vortex breakdown: observation and explanations. Prog. Aerospace Sci. 25, 189.Google Scholar
Escudier, M. P., Borstein, J. & Maxworthy, T. 1982 The dynamics of confined vortices. Proc. R. Soc. Land. A 382, 355.Google Scholar
Escudier, M. P., Borstein, J. & Zehnder, N. 1980 Observations and LDA measurements of confined turbulent vortex flow. J. Fluid Mech. 98, 49.Google Scholar
Escudier, M. P. & Zehnder, N. 1982 Vortex flow regimes. J. Fluid Mech. 115, 105.Google Scholar
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20, 1385.Google Scholar
Garg, A. K. & Leibovich, S. 1979 Spectral characteristics of vortex breakdown flowfields. Phys. Fluids 22, 2053.Google Scholar
Granger, R. A. 1966 Steady three-dimemional vortex flow. J. Fluid Mech. 25. 557.Google Scholar
Granger, R. A. 1968 Speed of a surge in a bathtub vortex. J. Fluid Mech. 34, 651.Google Scholar
Granger, R. A. 1972 A steady axisymmetric vortex field. Geophys, Fluid Dyn. 3, 45.Google Scholar
Granger, R. A. 1973 On the decay of a viscous vortex. Q. Appl. Maths 30, 531.Google Scholar
Hall, M. G. 1972 Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195.Google Scholar
Kinney, R. B. 1967 Universal velocity similarity in fully turbulent rotating flows. Trans. ASME E: J. Appl. Mech. 34, 437.Google Scholar
Lambourne, N. C. & Bryer, D. W. 1962 The bursting of leading-edge vortices – some observations and discussion of the phenomenon. UK Aero. Res. Counc. R & M 3282.
Leibovich, S. 1978 The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221.Google Scholar
Leibovich, S. 1983 Vortex stability and breakdown: Survey and extension. AIAA J. 22, 1192.Google Scholar
Ludweig, H. 1961 Erganzung zu der Arbeit: ‘Stabilitat der Stromung in einem zylindrischen Ringraum’. Z. Flugwiss 9, 359.Google Scholar
Lodweig, H. 1964 Experimental verification of the stability theory for inviscid flows with helical streamlines. Z. Flugwiss 12, 304.Google Scholar
Lugt, H. 1962 Ein der Drallstromung auf die Durchflusszahlen genormeter Drosselmessgerate. Rep, Br. Hydromech. Res. Ass. T716.Google Scholar
Lugt, H. & Abboud, M. 1987 Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid. J. Fluid Mech. 179, 179.Google Scholar
Maxworthy, T. 1974 Turbulent vortex rings. J. Fluid Mech. 64. 227.Google Scholar
Maxworthy, T. 1977 Some experimental studies of vortex rings. J. Fluid Mech. 81, 465.Google Scholar
Morgan, G. 1951 A study of motions in a rotating liquid. Proc,. R. Soc. Land. A 206, 108.Google Scholar
Murthy, S. N. B. 1971 Survey of some aspects of swirling flows. Aero. Res. Lab. Rep. ARL 71–0244, p. 299.Google Scholar
Oser, H. 1957 Eezwungene Schwlngungen in rotierendcn Flussigkeiten. Arch. Rat. Mech, Anal. 1, 81.Google Scholar
Rott, N. & Lewellen, W. 1966 Boundary layers and their interactions in rotating flows. Prog. Aerospace Sci. 7. 111.Google Scholar
Sarpkaya, T. 1971 On stationary and travelling vortex breakdown, J. Fluid Meek. 45, 545.Google Scholar
Squire, H. B. 1960 Analysis of the ‘vortex breakdown’ phenomenon. Part I. Imperial College Aero. Dept. Rep. 102.Google Scholar
Stuart, J. T. 1987 A critical review of vortex-breakdown theory. In 2nd Intl Colloq. in Vortical Flow, Baden, Switzerland. BBC SFB 25.
Thomson, Sir William 1910 Vibrations of a columnar vortex. In Mathematical and Physical Papers, p. 162. Cambridge University Press.
Wedemeyer, E. 1982 Vortex breakdown. AGARD-VKI Lecture Series 121.Google Scholar
Weske, J, & Rankine, T. 1963 Generation of secondary motions in the field of a vortex Phus. Fluids 6, 1397.Google Scholar
Widnall, S. 1975 The structure and dynamics of vortex filaments. Ann. Rev. Fluid Mech. 7, 141Google Scholar
Yanta, W J. & SAmith, R. A. 1973 Measurements of turbulence-transport properties with a laser Doppler velocimeter. AIAA Paper 73169.Google Scholar