Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T05:27:01.742Z Has data issue: false hasContentIssue false

Two mechanisms of droplet splashing on a solid substrate

Published online by Cambridge University Press:  29 November 2017

Zhen Jian
Affiliation:
Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, International Center for Applied Mechanics, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, PR China Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Christophe Josserand*
Affiliation:
Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France LadHyX, CNRS, Ecole Polytechnique, UMR 7646, 91128 Palaiseau, France
Stéphane Popinet
Affiliation:
Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France
Pascal Ray
Affiliation:
Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France
Stéphane Zaleski
Affiliation:
Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France
*
Email address for correspondence: christophe.josserand@upmc.fr

Abstract

We investigate droplet impact on a solid substrate in order to understand the influence of the gas in the splashing dynamics. We use numerical simulations where both the liquid and the gas phases are considered incompressible in order to focus on the gas inertial and viscous contributions. We first confirm that the dominant gas effect on the dynamics is due to its viscosity through the cushioning of the gas layer beneath the droplet. We then describe an additional inertial effect that is directly related to the gas density. The two different splashing mechanisms initially suggested theoretically are observed numerically, depending on whether a jet is created before or after the impacting droplet wets the substrate. Finally, we provide a phase diagram of the drop impact outputs as the gas viscosity and density vary, emphasizing the dominant effect of the gas viscosity with a small correction due to the gas density. Our results also suggest that gas inertia influences the splashing formation through a Kelvin–Helmholtz-like instability of the surface of the impacting droplet, in agreement with former theoretical works.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afkhami, S., Buongiorno, J., Guion, A., Popinet, S., Scardovelli, R. & Zaleski, S.2017 Transition in a numerical model of contact line dynamics and forced dewetting. arXiv:1703.07038.Google Scholar
Afkhami, S., Zaleski, S. & Bussmann, M. 2009 A mesh-dependent model for applying dynamic contact angles to vof simulations. J. Comput. Phys. 228, 53705389.CrossRefGoogle Scholar
Agbaglah, G., Delaux, S., Fuster, D., Hoepffner, J., Josserand, C., Popinet, S., Ray, P., Scardovelli, R. & Zaleski, S. 2011 Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. C. R. Acad. Sci. Paris 339, 194207.Google Scholar
Bartolo, D., Josserand, C. & Bonn, D. 2005 Retraction dynamics of aqueous drops upon impact on nonwetting surfaces. J. Fluid Mech. 545, 329338.Google Scholar
Boeck, T. & Zaleski, S. 2005 Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys. Fluids 17, 032106.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.Google Scholar
Bouwhuis, W., van der Veen, R., Tran, T., Keij, D., Winkels, K., Peters, I., van der Meer, D., Sun, C., Snoeijer, J. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109, 264501.CrossRefGoogle ScholarPubMed
Driscoll, M. & Nagel, S. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.Google Scholar
Duchemin, L. & Josserand, C. 2011 Curvature singularity and film-skating during drop impact. Phys. Fluids 23, 091701.Google Scholar
Duchemin, L. & Josserand, C. 2012 Rarefied gas correction for the bubble entrapment singularity in drop impacts. C. R. Mecanique 340, 797803.Google Scholar
Dussan, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.CrossRefGoogle Scholar
Esmailizadeh, L. & Mesler, R. 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110 (2), 561574.Google Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41, 065001.Google Scholar
Fuster, D., Matas, J.-P., Marty, S, Popinet, S, Hoepffner, J., Cartellier, A. & Zaleski, S. 2013 Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150176.Google Scholar
Guo, Y., Lian, Y. & Sussman, M. 2016 Investigation of drop impact on dry and wet surfaces with consideration of surrounding air. Phys. Fluids 28, 073303.Google Scholar
Hicks, P., Ermanyuk, E., Gavrilov, N. & Purvis, R. 2012 Air trapping at impact of a rigid sphere onto a liquid. J. Fluid Mech. 695, 310320.CrossRefGoogle Scholar
Hicks, P. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.CrossRefGoogle Scholar
Jian, Z., Josserand, C., Ray, P., Duchemin, L., Popinet, S. & Zaleski, S. 2015 Modelling the thickness of the air layer in droplet impact. In ICLASS 2015, 13th Triennial International Conference on Liquid Atomization and Spray Systems, Tainan, Taiwan. ICLASS.Google Scholar
Josserand, C., Ray, P. & Zaleski, S. 2016 Droplet impact on a thin liquid film: anatomy of the splash. J. Fluid Mech. 802, 775805.Google Scholar
Josserand, C. & Thoroddsen, S. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15, 1650.Google Scholar
Kim, H., Park, U., Lee, C., Kim, H., Kim, M. & Kim, J. 2014 Drop splashing on a rough surface: how surface morphology affects splashing threshold. Appl. Phys. Lett. 104, 161608.CrossRefGoogle Scholar
Klaseboer, E., Manica, R. & Chan, D. Y. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113 (19), 194501.Google Scholar
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.Google Scholar
Korobkin, A. A., Ellis, A. S. & Smith, F. T. 2008 Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611, 365394.CrossRefGoogle Scholar
Legendre, D. & Maglio, M. 2015 Comparison between numerical models for the simulation of moving contact lines. Comput. Fluids 113, 213.Google Scholar
Lesser, M. B. & Field, J. E. 1983 The impact of compressible liquids. Annu. Rev. Fluid Mech. 15, 97122.Google Scholar
Li, E., Vakarelski, I. & Thoroddsen, S. 2015a Probing the nanoscale: the first contact of an impacting drop. J. Fluid Mech. 785, R2.CrossRefGoogle Scholar
Li, E. Q., Vakarelski, I. U. & Thoroddsen, S. T. 2015b Probing the nanoscale: the rst contact of an impacting drop. J. Fluid Mech. 785, R2.Google Scholar
Li, J. 1995 Calcul d’interface affine par morceaux (piecewise linear interface calculation). C. R. Acad. Sci. Paris 320, 391396.Google Scholar
Li, J. 2016 Macroscopic model for head-on binary droplet collisions in a gaseous medium. Phys. Rev. Lett. 117 (21), 214502.Google Scholar
Liu, Y., Tan, P. & Xu, L. 2015 Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces. Proc. Natl Acad. Sci. USA 112, 32803284.Google Scholar
Luchini, P. & Charru, F. 2010 Consistent section-averaged equations of quasi-one-dimensional laminar flow. J. Fluid. Mech. 565, 337341.Google Scholar
Mahadi, K., Afkhami, S. & Kondic, L. 2015 A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries. J. Comput. Phys. 294, 243257.Google Scholar
Mahady, K., Afkhami, S. & Kondic, L. 2016 A numerical approach for the direct computation of flows including fluid/solid interaction: modeling contact angle, film rupture, and dewetting. Phys. Fluids 28, 062002.Google Scholar
Mandre, S. & Brenner, M. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.Google Scholar
Mandre, S., Mani, M. & Brenner, M. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102, 134502.Google Scholar
Mani, M., Mandre, S. & Brenner, M. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.Google Scholar
Marengo, M., Antonini, C., Roisman, I. V. & Tropea, C. 2011 Drop collisions with simple and complex surfaces. Curr. Opin. Colloid Interface Sci. 16 (4), 292302.CrossRefGoogle Scholar
Maxwell, J. 1866 On the viscosity or internal friction of air and other gases. Phil. Trans. R. Soc. Lond. 156, 249268.Google Scholar
Mehdi-Nejad, V., Mostaghimi, J. & Chandra, S. 2003 Air bubble entrapment under an impacting droplet. Phys. Fluids 15 (1), 173183.Google Scholar
Moore, M., Ockendon, J. & Oliver, J. 2013 Air-cushioning in impact problems. IMA J. Appl. Maths 78, 818838.CrossRefGoogle Scholar
Moore, M. & Oliver, J. 2014 On air cushioning in axisymmetric impacts. IMA J. Appl. Maths. 79, 661680.Google Scholar
Philippi, J., Lagrée, P.-Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short time self-similarity. J. Fluid Mech. 795, 96135.Google Scholar
Popinet, S.2001 Gerris flow solver. Available at: http://gfs.sorceforge.net.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.Google Scholar
Purvis, R. & Smith, F. 2004 Air–water interactions near droplet impact. Eur. J. Appl. Maths 15, 853871.Google Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 61127.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113, 024507.Google Scholar
Riboux, G. & Gordillo, J. 2015 The diameters and velocities. J. Fluid Mech. 772, 630648.Google Scholar
Smith, F. T., Li, L. & Wu, G. X. 2003 Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482, 291318.Google Scholar
Thoraval, M.-J., Li, Y. & Thoroddsen, S. 2016 Vortex-ring-induced large bubble entrainment during drop impact. Phys. Rev. E 93, 033128.Google ScholarPubMed
Thoraval, M.-J., Takehara, K., Etoh, T., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. 2012 von kármán vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.Google Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.Google Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2008 High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 40, 257285.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, N. & Hatsuki, A. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.Google Scholar
Tran, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.Google Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Villermaux, E. 1998 On the role of viscosity in shear instabilities. Phys. Fluids 10, 368373.Google Scholar
Wagner, H. 1932 über Stoss und Gleitvorgänge und der Oberfläshe von Flüssigkeiten. Z. Angew. Math. Mech. 12 (4), 193215.Google Scholar
Wang, A.-B., Kuan, C.-C. & Tsai, P.-H. 2013 Do we understand the bubble formation by a single drop impacting upon liquid surface? Phys. Fluids 25, 101702.Google Scholar
Wilson, S. & Duffy, B. 1998 On lubrication with comparable viscous and inertia forces. Q. J. Mech. Appl. Maths 51, 105124.Google Scholar
Worthington, A. M. 1876 On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25 (171–178), 261272.Google Scholar
Xu, L., Zhang, W. & Nagel, S. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.Google Scholar
Yecko, P. & Zaleski, S. 1999 Two-phase shear instability: waves, fingers and drops. Ann. N.Y. Acad. Sci. 898, 127143.Google Scholar
Yecko, P., Zaleski, S. & Fullana, J.-M. 2002 Viscous modes in two-phase mixing layers. Phys. Fluids 14, 41154122.Google Scholar
Yokoi, K., Vadillo, D., Hinch, J. & Hutchings, I. 2009 Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface. Phys. Fluids 21, 072102.Google Scholar