Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T04:29:54.993Z Has data issue: false hasContentIssue false

Universal aspects of small-scale motions in turbulence

Published online by Cambridge University Press:  22 September 2010

G. E. ELSINGA*
Affiliation:
Department of Mechanical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia Laboratory for Aero and Hydrodynamics, Delft University of Technology, Leeghwaterstraat 21, 2628 CA, Delft, The Netherlands
I. MARUSIC
Affiliation:
Department of Mechanical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
*
Email address for correspondence: g.e.elsinga@tudelft.nl

Abstract

Two aspects of small-scale turbulence are currently regarded universal, as they have been reported for a wide variety of turbulent flows. Firstly, the vorticity vector has been found to display a preferential alignment with the eigenvector corresponding to the intermediate eigenvalue of the strain rate tensor; and secondly, the joint probability density function (p.d.f.) of the second and third invariant of the velocity gradient tensor, Q and R, has a characteristic teardrop shape. This paper provides an explanation for these universal aspects in terms of a spatial organization of coherent structures, which is based on an evaluation of the average flow pattern in the local coordinate system defined by the eigenvectors of the strain rate tensor. The approach contrasts with previous investigations, which have relied on assumed model flows. The present average flow patterns have been calculated for existing experimental (particle image velocimetry) or numerical (direct numerical simulation) datasets of a turbulent boundary layer (TBL), a turbulent channel flow and for homogeneous isotropic turbulence. All results show a shear-layer structure consisting of aligned vortical motions, separating two larger-scale regions of relatively uniform flow. Because the directions of maximum and minimum strain in a shear layer are in the plane normal to the vorticity vector, this vector aligns with the remaining strain direction, i.e. the intermediate eigenvector of the strain rate tensor. Further, the QR joint p.d.f. for these average flow patterns reveals a shape reminiscent of the teardrop, as seen in many turbulent flows. The above-mentioned organization of the small-scale motions is not only found in the average patterns, but is also frequently observed in the instantaneous velocity fields of the different turbulent flows. It may, therefore, be considered relevant and universal.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.Google Scholar
Adrian, R. J. & Liu, Z. C. 2002 Observation of vortex packets in direct numerical simulation of fully turbulent channel flow. J. Vis. 5, 919.Google Scholar
del Alamo, J. C., Jimenez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.Google Scholar
del Alamo, J. C., Jimenez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.CrossRefGoogle Scholar
Andreotti, B. 1997 Studying Burgers' models to investigate the physical meaning of the alignments statistically observed in turbulence. Phys. Fluids 9, 735742.Google Scholar
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 23432353.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1949 The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A 199, 238255.Google Scholar
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.Google Scholar
Biferale, L., Chevillard, L., Meneveau, C. & Toschi, F. 2007 Multiscale model of gradient evolution in turbulent flows. Phys. Rev. Lett. 98, 214501.CrossRefGoogle ScholarPubMed
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.Google Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.Google Scholar
Cantwell, B. J. 1992 Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids 4, 782793.CrossRefGoogle Scholar
Cantwell, B. J. 1993 On the behavior of velocity gradient tensor invariants in direct numerical simulation of turbulence. Phys. Fluids 5, 20082013.CrossRefGoogle Scholar
Chacin, J. M. & Cantwell, B. J. 2000 Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404, 87115.Google Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.Google Scholar
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 A study of the turbulence structures of wall-bounded shear flows using DNS data. J. Fluid Mech. 357, 225248.CrossRefGoogle Scholar
Elsinga, G. E., Adrian, R. J., van Oudheusden, B. W. & Scarano, F. 2010 Three-dimensional vortex organization in a high Reynolds number supersonic turbulent boundary layer. J. Fluid Mech. 644, 3560.CrossRefGoogle Scholar
Elsinga, G. E., Kuik, D. J., van Oudheusden, B. W. & Scarano, F. 2007 Investigation of the three-dimensional coherent structures in a turbulent boundary layer. In Forty-fifth AIAA Aerospace Sciences Meeting, Reno, NV. AIAA Paper 2007-1305.Google Scholar
Elsinga, G. E. & Marusic, I. 2010 Evolution and lifetimes of flow topology in a turbulent boundary layer. Phys. Fluids 22, 015102.Google Scholar
Elsinga, G. E., Scarano, F., Wieneke, B. & Van Oudheusden, B. W. 2006 Tomographic particle image velocimetry. Exp. Fluids 41, 933947.CrossRefGoogle Scholar
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. T. 2008 Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 598, 141175.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in the turbulent boundary layer. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Gere, J. M. & Timoshenko, S. P. 1991 Mechanics of Materials, 3rd SI edn. Chapman and Hall.Google Scholar
Goto, S. 2008 A physical mechanism of the energy cascade in homogeneous isotropic turbulence. J. Fluid Mech. 605, 355366.CrossRefGoogle Scholar
Guala, M., Lüthi, B., Liberzon, A., Tsinober, A. & Kinzelbach, W. 2005 On the evolution of material lines and vorticity in homogenous turbulence. J. Fluid Mech. 533, 339359.CrossRefGoogle Scholar
Horiuti, K. & Fujisawa, T. 2008 The multi-mode stretched spiral vortex in homogeneous isotropic turbulence. J. Fluid Mech. 595, 341366.CrossRefGoogle Scholar
Huang, M.-J. 1996 Correlations of vorticity and material line elements with strain in decaying turbulence. Phys. Fluids 8, 22032214.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.Google Scholar
Jimenez, J. 1992 Kinematic alignment effects in turbulent flows. Phys. Fluids 4, 652654.Google Scholar
Jimenez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in homogeneous isotropic turbulence. J. Fluid Mech. 255, 6590.Google Scholar
Kerr, R. M. 1985 Higher-order derivative conclusions and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.CrossRefGoogle Scholar
Kevlahan, N. K. R. & Hunt, J. C. R. 1997 Nonlinear interactions in turbulence with strong irrotational straining. J. Fluid Mech. 337, 333364.Google Scholar
Kholmyansky, M., Tsinober, A. & Yorish, S. 2001 Velocity derivatives in the atmospheric turbulent flow at Re λ = 104. Phys. Fluids 13, 311314.CrossRefGoogle Scholar
Kida, S. & Tanaka, M. 1994 Dynamics of vortical structures in a homogeneous shear flow. J. Fluid Mech. 274, 4368.CrossRefGoogle Scholar
Lüthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurements of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87118.CrossRefGoogle Scholar
Meinhart, C. D. & Adrian, R. J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7, 694696.CrossRefGoogle Scholar
Misra, A. & Pullin, D. I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 24432454.CrossRefGoogle Scholar
Moisy, F. & Jimenez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.CrossRefGoogle Scholar
Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.Google Scholar
Ohkitani, K. 2002 Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Phys. Rev. E 65, 046304.CrossRefGoogle ScholarPubMed
Ooi, A., Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.Google Scholar
Passot, T., Politano, H., Sulem, P. L., Angilella, J. R. & Meneguzzi, M. 1995 Instability of strained vortex layers and vortex tube formation in homogeneous turbulence. J. Fluid Mech. 282, 313338.CrossRefGoogle Scholar
Ringuette, M. J., Wu, M. & Martin, M. P. 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.Google Scholar
Rogallo, R. S. 1981 Numerical experiments in homogenous turbulence. Tech. Rep. TM 81315. NASA.Google Scholar
Ruetsch, G. R. & Maxey, M. R. 1991 Small-scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence. Phys. Fluids A 3, 15871597.Google Scholar
Ruetsch, G. R. & Maxey, M. R. 1992 The evolution of small-scale structures in homogeneous isotropic turbulence. Phys. Fluids A 4, 27472760.Google Scholar
Schröder, A., Geisler, R., Staack, K., Wieneke, B., Elsinga, G. E., Scarano, F., Henning, A. 2008 Lagrangian and Eulerian views into a turbulent boundary layer flow using time-resolved tomographic-PIV. 14th Intl. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal. Exp. Fluids (submitted, 2009).Google Scholar
She, Z.-S., Jackson, E. & Orszag, S. A. 1990 Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344, 226228.Google Scholar
Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6, 871884.Google Scholar
Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.CrossRefGoogle Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in a turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Tsinober, A. 2001 An Informal Introduction to Turbulence. Kluwer.CrossRefGoogle Scholar
Tsinober, A., Kit, E. & Dracos, T. 1992 Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169192.CrossRefGoogle Scholar
Vieillefosse, P. 1984 Internal motion of a small element of fluid in an inviscid flow. Physica A 125, 150162.Google Scholar
Vincent, A. & Meneguzzi, M. 1994 The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245254.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.Google Scholar