Hostname: page-component-857557d7f7-c8jtx Total loading time: 0 Render date: 2025-11-28T20:09:00.277Z Has data issue: false hasContentIssue false

A universal criterion for underwater gas bubble stability

Published online by Cambridge University Press:  28 November 2025

Yaolei Xiang
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University , Beijing 100871, PR China CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871, PR China
Shenglin Huang
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University , Beijing 100871, PR China
Xu Zhou
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University , Beijing 100871, PR China
Pengyu Lv
Affiliation:
Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, PR China
Gang Wang
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University , Beijing 100871, PR China
Tian-Yun Huang
Affiliation:
Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, PR China
Hongyuan Li
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University , Beijing 100871, PR China CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871, PR China
Yahui Xue
Affiliation:
Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen 518055, PR China
Huiling Duan*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University , Beijing 100871, PR China CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871, PR China
*
Corresponding author: Huiling Duan, hlduan@pku.edu.cn

Abstract

The stability of underwater bubbles is important to many natural phenomena and industrial applications. Since stability analyses are complex and influenced by numerous factors, they are often performed on a case-specific basis, with most being qualitative. In this work, we propose a unified and quantitative criterion for evaluating bubble stability by analysing its free energy. This criterion is broadly applicable across various bubble sizes (from nanometres to macroscale) and contact conditions (suspended, attached and trapped bubbles) on surfaces with diverse chemical (hydrophilic and hydrophobic) and morphological (flat and structured solid surfaces) features. This criterion not only applies to the classical stable bubble mode, which depends on contact line pinning at the tips of surface structures, but also predicts a new mode where the synergy between the geometry and wettability of the sidewalls maintains the bubble’s stable state. The contact line can spontaneously adjust its position on the solid surface to maintain pressure balance, which enhances bubble adaptability to environmental changes. A geometric standard for solid surfaces supporting this new stable state is raised, following which we realise the optimisation of solid surface geometries to control the stability of gas bubbles. This work not only provides a universal framework for understanding underwater bubble stability, but also opens avenues for applications.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adamkowski, A., Henke, A. & Lewandowski, M. 2016 Resonance of torsional vibrations of centrifugal pump shafts due to cavitation erosion of pump impellers. Engng Fail. Anal. 70, 5672.10.1016/j.engfailanal.2016.07.011CrossRefGoogle Scholar
Arndt, R.E. 1981 Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid Mech. 13, 273326.10.1146/annurev.fl.13.010181.001421CrossRefGoogle Scholar
Atchley, A.A. & Prosperetti, A. 1989 The crevice model of bubble nucleation. J. Acoust. Soc. Am. 86, 10651084.10.1121/1.398098CrossRefGoogle Scholar
Brenner, M.P. & Lohse, D. 2008 Dynamic equilibrium mechanism for surface nanobubble stabilization. Phys. Rev. Lett. 101 (21), 214505.10.1103/PhysRevLett.101.214505CrossRefGoogle ScholarPubMed
Chappell, M.A. & Payne, S.J. 2007 The effect of cavity geometry on the nucleation of bubbles from cavities. J. Acoust. Soc. Am. 121, 853862.10.1121/1.2404629CrossRefGoogle ScholarPubMed
Choi, C.-H. & Kim, C.-J. 2006 Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96 (6), 066001.10.1103/PhysRevLett.96.066001CrossRefGoogle Scholar
Concus, P. & Finn, R. 1969 On the behavior of a capillary surface in a wedge. Proc. Natl Acad. Sci. USA 63, 292299.10.1073/pnas.63.2.292CrossRefGoogle Scholar
Concus, P. & Finn, R. 1974 On capillary free surfaces in the absence of gravity. Acta Mathematica 132, 177198.10.1007/BF02392113CrossRefGoogle Scholar
Domingues, E.M., Arunachalam, S., Nauruzbayeva, J. & Mishra, H. 2018 Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids. Nat. Commun. 9 (1), 3606.10.1038/s41467-018-05895-xCrossRefGoogle ScholarPubMed
Granick, S., Zhu, Y. & Lee, H. 2003 Slippery questions about complex fluids flowing past solids. Nat. Mater. 2 (4), 221227.10.1038/nmat854CrossRefGoogle ScholarPubMed
Guichet, V., Almahmoud, S. & Jouhara, H. 2019 Nucleate pool boiling heat transfer in wickless heat pipes (two-phase closed thermosyphons): a critical review of correlations. Therm. Sci. Engng Prog. 13, 100384.10.1016/j.tsep.2019.100384CrossRefGoogle Scholar
Jones, S.F., Evans, G.M. & Galvin, K.P. 1999 Bubble nucleation from gas cavities – a review. Adv. Colloid Interface Sci. 80, 2750.10.1016/S0001-8686(98)00074-8CrossRefGoogle Scholar
Karimi, A. & Martin, J.L. 1986 Cavitation erosion of materials. Intl Metal. Rev. 31, 126.Google Scholar
Koishi, T., Yasuoka, K., Fujikawa, S., Ebisuzaki, T. & Zeng, X.C. 2009 Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc. Natl Acad. Sci. USA 106, 84358440.10.1073/pnas.0902027106CrossRefGoogle ScholarPubMed
Langbein, D. 1990 The shape and stability of liquid menisci at solid edges. J. Fluid Mech. 213, 251265.10.1017/S0022112090002312CrossRefGoogle Scholar
Li, J., Mayorga-Martinez, C.C., Ohl, C.D. & Pumera, M. 2022 Ultrasonically propelled micro- and nanorobots. Adv. Funct. Mater. 32, 2102265.10.1002/adfm.202102265CrossRefGoogle Scholar
Li, Y., Quéré, D., Lv, C. & Zheng, Q. 2017 Monostable superrepellent materials. Proc. Natl Acad. Sci. USA 114, 33873392.10.1073/pnas.1614667114CrossRefGoogle ScholarPubMed
Liu, G., Wong, W.S., Kraft, M., Ager, J.W., Vollmer, D. & Xu, R. 2021 Wetting-regulated gas-involving (photo) electrocatalysis: biomimetics in energy conversion. Chem. Soc. Rev. 50, 1067410699.10.1039/D1CS00258ACrossRefGoogle ScholarPubMed
Lohse, D. & Zhang, X. 2015 a Pinning and gas oversaturation imply stable single surface nanobubbles. Phys. Rev. E 91 (3), 31003.10.1103/PhysRevE.91.031003CrossRefGoogle ScholarPubMed
Lohse, D. & Zhang, X. 2015 b Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87 (3), 9811035.10.1103/RevModPhys.87.981CrossRefGoogle Scholar
Lv, P., Xue, Y., Shi, Y., Lin, H. & Duan, H. 2014 Metastable states and wetting transition of submerged superhydrophobic structures. Phys. Rev. Lett. 112, 196101.10.1103/PhysRevLett.112.196101CrossRefGoogle ScholarPubMed
Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D. & Butt, H.J. 2013 How superhydrophobicity breaks down. Proc. Natl Acad. Sci. USA 110, 32543258.10.1073/pnas.1218673110CrossRefGoogle ScholarPubMed
Pfeiffer, P., Eisener, J., Reese, H., Li, M., Ma, X., Sun, C. & Ohl, C.D. 2022 Thermally assisted heterogeneous cavitation through gas supersaturation. Phys. Rev. Lett. 128, 194501.10.1103/PhysRevLett.128.194501CrossRefGoogle ScholarPubMed
Plesset, M.S. & Sadhal, S.S. 1982 On the stability of gas bubbles in liquid–gas solutions. Appl. Sci. Res. 38 (1), 133141.10.1007/BF00385944CrossRefGoogle Scholar
Poetes, R., Holtzmann, K., Franze, K. & Steiner, U. 2010 Metastable underwater superhydrophobicity. Phys. Rev. Lett. 105 (16), 166104.10.1103/PhysRevLett.105.166104CrossRefGoogle ScholarPubMed
Prakash, S., Xi, E. & Patel, A.J. 2016 Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Proc. Natl Acad. Sci. USA 113, 55085513.10.1073/pnas.1521753113CrossRefGoogle ScholarPubMed
Prentice, P., Cuschieri, A., Dholakia, K., Prausnitz, M. & Campbell, P. 2005 Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 1, 107110.10.1038/nphys148CrossRefGoogle Scholar
Srinivasan, S., Kleingartner, J.A., Gilbert, J.B., Cohen, R.E., Milne, A.J.B. & McKinley, G.H. 2015 Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett. 114 (1), 014501.10.1103/PhysRevLett.114.014501CrossRefGoogle ScholarPubMed
Sun, Y., Yao, Z., Wang, C., Zhong, Q., Xiao, R., Ohl, C.-D. & Wang, F. 2025 Dynamics of cavitation bubbles near a gas-entrapping rigid surface. J. Fluid Mech. 1013 A9.10.1017/jfm.2025.399CrossRefGoogle Scholar
Tan, B.H., An, H. & Ohl, C.-D. 2021 Stability of surface and bulk nanobubbles. Curr. Opin. Colloid Interface Sci. 53, 101428.10.1016/j.cocis.2021.101428CrossRefGoogle Scholar
Temprano-Coleto, F., Smith, S.M., Peaudecerf, F.J., Landel, J.R., Gibou, F. & Luzzatto-Fegiz, P. 2023 A single parameter can predict surfactant impairment of superhydrophobic drag reduction. Proc. Natl Acad. Sci. USA 120 (3), e2211092120.10.1073/pnas.2211092120CrossRefGoogle ScholarPubMed
Versluis, M., Schmitz, B., Von der Heydt, A. & Lohse, D. 2000 How snapping shrimp snap: through cavitating bubbles. Science 289, 21142117.10.1126/science.289.5487.2114CrossRefGoogle ScholarPubMed
Wang, J., Abe, A., Koita, T., Sun, M., Wang, Y. & Huang, C. 2018 Study of sterilization effects on marine Vibrio sp. using interaction of cavitation with shock wave in a narrow water chamber. J. Appl. Phys. 124, 213301.10.1063/1.5052521CrossRefGoogle Scholar
Xiang, Y., Huang, S., Huang, T.Y., Dong, A., Cao, D., Li, H., 2020 Superrepellency of underwater hierarchical structures on salvinia leaf. Proc. Natl Acad. Sci. USA 117, 22822287.10.1073/pnas.1900015117CrossRefGoogle ScholarPubMed
Xiang, Y., Huang, S., Lv, P., Xue, Y., Su, Q. & Duan, H. 2017 Ultimate stable underwater superhydrophobic state. Phys. Rev. Lett. 119, 134501.10.1103/PhysRevLett.119.134501CrossRefGoogle ScholarPubMed
Xu, M., Sun, G. & Kim, C.J. 2014 Infinite lifetime of underwater superhydrophobic states. Phys. Rev. Lett. 113, 136103.10.1103/PhysRevLett.113.136103CrossRefGoogle ScholarPubMed
Xue, Y., Lv, P., Lin, H. & Duan, H. 2016 Underwater superhydrophobicity: stability, design and regulation, and applications. Appl. Mech. Rev. 68, 030803.10.1115/1.4033706CrossRefGoogle Scholar
Zhang, X., Chan, D.Y.C., Wang, D. & Maeda, N. 2013 Stability of interfacial nanobubbles. Langmuir 29 (4), 10171023.10.1021/la303837cCrossRefGoogle ScholarPubMed
Zhang, Y. & Lohse, D. 2023 Minimum current for detachment of electrolytic bubbles. J. Fluid Mech. 975, R3.10.1017/jfm.2023.898CrossRefGoogle Scholar
Zhang, Y., Zhu, X., Wood, J.A. & Lohse, D. 2024 Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles. Proc. Natl Acad. Sci. USA 121 (21), e2321958121.10.1073/pnas.2321958121CrossRefGoogle ScholarPubMed
Supplementary material: File

Xiang et al. supplementary material

Xiang et al. supplementary material
Download Xiang et al. supplementary material(File)
File 1.6 MB