Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T08:57:14.756Z Has data issue: false hasContentIssue false

The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface

Published online by Cambridge University Press:  10 June 2014

Markus Gampert
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen, Germany
Jonas Boschung*
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen, Germany
Fabian Hennig
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen, Germany
Michael Gauding
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen, Germany
Norbert Peters
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen, Germany
*
Email address for correspondence: j.boschung@itv.rwth-aachen.de

Abstract

Based on a direct numerical simulation (DNS) of a temporally evolving mixing layer, we present a detailed study of the turbulent/non-turbulent (T/NT) interface that is defined using the two most common procedures in the literature, namely either a vorticity or a scalar criterion. The different detection approaches are examined qualitatively and quantitatively in terms of the interface position, conditional statistics and orientation of streamlines and vortex lines at the interface. Computing the probability density function (p.d.f.) of the mean location of the T/NT interface from vorticity and scalar allows a detailed comparison of the two methods, where we observe a very good agreement. Furthermore, conditional mean profiles of various quantities are evaluated. In particular, the position p.d.f.s for both criteria coincide and are found to follow a Gaussian distribution. The terms of the governing equations for vorticity and passive scalar are conditioned on the distance to the interface and analysed. At the interface, vortex stretching is negligible and the displacement of the vorticity interface is found to be determined by diffusion, analogous to the scalar interface. In addition, the orientation of vortex lines at the vorticity and the scalar based T/NT interface are analyzed. For both interfaces, vorticity lines are perpendicular to the normal vector of the interface, i.e. parallel to the interface isosurface.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexopoulos, C. C. & Keffer, J. F. 1971 Turbulent wake in a passively stratified field. Phys. Fluids 14, 216224.Google Scholar
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 23432353.CrossRefGoogle Scholar
Bisset, D., Hunt, J. & Rogers, M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.Google Scholar
Brown, G. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.Google Scholar
Buch, K. A. & Dahm, W. J. 1996 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. $Sc>1$ . J. Fluid Mech. 317, 2171.CrossRefGoogle Scholar
Buch, K. A. & Dahm, W. J. 1998 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. $Sc\approx 1$ . J. Fluid Mech. 364, 129.CrossRefGoogle Scholar
Cannon, S., Champagne, E. & Glezer, A. 1993 Observations of large-scale structures in wakes behind axisymmetric bodies. Exp. Fluids 14, 447450.Google Scholar
Chong, M., Perry, A. & Cantwell, B. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 408420.CrossRefGoogle Scholar
Dimotakis, P., Miake-Lye, R. & Papantoniou, D. A. 1983 Structure and dynamics of round turbulent jets. Phys. Fluids 26, 31853192.Google Scholar
Frank, J. H. & Kaiser, S. A. 2010 High-resolution imaging of turbulence structures in jet flames and non-reacting jets with laser Rayleigh scattering. Exp. Fluids 49 (4), 823837.Google Scholar
Gampert, M., Kleinheinz, K., Peters, N. & Pitsch, H. 2014 Experimental and numerical study of the scalar turbulent/non-turbulent interface layer in a jet flow. Flow Turbul. Combust. 92 (1–2), 429449.Google Scholar
Gampert, M., Narayanaswamy, V., Schaefer, P. & Peters, N. 2013a Conditional statistics of the turbulent/non-turbulent interface in a jet flow. J. Fluid Mech. 731, 615638.Google Scholar
Gampert, M., Schaefer, P., Narayanaswamy, V. & Peters, N. 2013b Gradient trajectory analysis in a jet flow for turbulent combustion modelling. J. Turbul. 14, 147164.Google Scholar
Grant, H. 1958 The large eddies of turbulent motion. J. Fluid Mech. 4, 149190.CrossRefGoogle Scholar
Holzner, M., Liberzon, A., Nikitin, N., Kinzelbach, W. & Tsinober, A. 2007a Small-scale aspects of flows in proximity of the turbulent/non-turbulent interface. Phys. Fluids 19 (7), 071702.Google Scholar
Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W. & Tsinober, A. 2008 A Lagrangian investigation of the small-scale features of turbulent entrainment through 3D-PTV and DNS. J. Fluid Mech. 598, 465475.CrossRefGoogle Scholar
Holzner, M., Luethi, B., Tsinober, A. & Kinzelbach, W. 2007b Acceleration, pressure and related quantities in the proximity of the turbulent/non-turbulent interface. J. Fluid Mech. 639, 153165.Google Scholar
Hunt, J., Eames, I., da Silva, C. & Westerweel, J. 2011 Interfaces and inhomogeneous turbulence. Phil. Trans. R. Soc. Lond. A 369, 811832.Google ScholarPubMed
Hussain, A. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.Google Scholar
Jimenez, J., Wray, A. A., Saffmann, P. G. & Rogallo, R. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.CrossRefGoogle Scholar
Kerr, R. M. 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.CrossRefGoogle Scholar
Kline, S., Reynolds, W., Schraub, F. & Runstadler, P. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.Google Scholar
Kushnir, D., Schumacher, J. & Brandt, A. 2006 Geometry of intense scalar dissipation events in turbulence. Phys. Rev. Lett. 97, 124502.Google Scholar
Lele, S. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.Google Scholar
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.Google Scholar
Marusic, I. & Adrian, R. A. 2011 The eddies and scales of wall turbulence. In Ten Chapters in Turbulence (ed. Kaneda, Y., Davidson, P. & Sreenivasan, K. R.), Cambridge University Press.Google Scholar
Marusic, I. & Perry, A. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech. 298, 389407.CrossRefGoogle Scholar
Mathew, J. & Basu, A. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14, 20652072.Google Scholar
Mellado, J. P., Wang, L. & Peters, N. 2009 Gradient trajectory analysis of a scalar field with internal intermittency. J. Fluid Mech. 626, 333365.CrossRefGoogle Scholar
Nickels, T. & Perry, A. 1996 An experimental and theoretical study of the turbulent coflowing jet. J. Fluid Mech. 309, 157182.Google Scholar
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.Google Scholar
Patton, R., Gabet, K., Jiang, N., Lempert, W. & Sutton, J. 2012 Multi-khz mixture fraction imaging in turbulent jets using planar Rayleigh scattering. Appl. Phys. B 106, 457471.CrossRefGoogle Scholar
Perry, A. & Chong, M. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.Google Scholar
Philip, J. & Marusic, I. 2012 Large-scale eddies and their role in entrainment in turbulent jets and wakes. Phys. Fluids 24 (5), 055108.CrossRefGoogle Scholar
Prasad, R. R. & Sreenivasan, K. R. 1989 Scalar interfaces in digital images of turbulent flows. Exp. Fluids 7, 259264.CrossRefGoogle Scholar
Rogers, M. & Moser, R. 1994 Direct numerical simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903923.Google Scholar
Ruetsch, G. R. & Maxey, M. R. 1991 Small-scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence. Phys. Fluids A 3, 15871597.CrossRefGoogle Scholar
da Silva, C. B. & Dos Reis, R. J. N. 2011 The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil. Trans. R. Soc. Lond. A 369 (1937), 738753.Google Scholar
da Silva, C. B. & Pereira, J. C. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/non-turbulent interface in jets. Phys. Fluids 20, 055101.Google Scholar
da Silva, C. B. & Taveira, R. R. 2010 The thickness of the turbulent/non-turbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys. Fluids 22, 121702.Google Scholar
Sreenivasan, K. R. & Meneveau, C. 1986 The fractal facets of turbulence. J. Fluid Mech. 173, 357386.Google Scholar
Su, L. K. & Clemens, N. T. 2003 The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. J. Fluid Mech. 488, 129.Google Scholar
Taveira, R. R. & da Silva, C. B. 2013 Kinetic energy budgets near the turbulent/non-turbulent interface in jets. Phys. Fluids 25, 015114.CrossRefGoogle Scholar
Townsend, A. A. 1948 Local isotropy in the turbulent wake of a cylinder. Austral. J. Sci. Res. A 1 (2), 161174.Google Scholar
Townsend, A. A. 1949 The fully developed turbulent wake of a circular cylinder. Austral. J. Sci. Res. A 2 (4), 451468.Google Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Townsend, A. A. 1966 The mechanism of entrainment in free turbulent flows. J. Fluid Mech. 26, 689715.Google Scholar
Townsend, A. A. 1987 Organized eddy structures in turbulent flows. Physico-Chem. Hydrodyn. 8 (1), 2330.Google Scholar
Tsinober, A., Ortenberg, M. & Shtilman, L. 1999 On depression of nonlinearity in turbulence. Phys. Fluids 11, 22912297.CrossRefGoogle Scholar
Tsinober, A., Shtilman, L. & Vaisburd, H. 1997 A study of properties of vortex stretching and enstrophy generation in numerical and laboratory turbulence. Fluid Dyn. Res. 21 (6), 477494.Google Scholar
Vincent, A. & Meneguzzi, M. 1994 On the dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245254.CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.Google Scholar
Watanabe, T. & Gotoh, T. 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6 (40), 010040.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. & Hunt, J. 2005 Mechanics of the turbulent non-turbulent interface of a jet. Phys. Rev. Lett. 95, 174501.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. & Hunt, J. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.Google Scholar
Westerweel, J., Hofmann, T., Fukushima, C. & Hunt, J. 2002 The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp. Fluids 33, 873878.Google Scholar
Westerweel, J., Petracci, A., Delfos, R. & Hunt, J. 2011 Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet. Phil. Trans. R. Soc. Lond. A 369, 723737.Google Scholar
Yoda, M., Hesselink, L. & Mungal, M. G. 1994 Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-Schmidt-number jet. J. Fluid Mech. 279, 313350.Google Scholar