Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T23:23:27.221Z Has data issue: false hasContentIssue false

Almost limiting configurations of steady interfacial overhanging gravity waves

Published online by Cambridge University Press:  09 October 2018

Dmitri V. Maklakov*
Affiliation:
Kazan (Volga region) Federal University, N. I. Lobachevsky Institute of Mathematics and Mechanics, Kremlyovskaya 35, Kazan, 420008, Russia
Ruslan R. Sharipov
Affiliation:
Kazan (Volga region) Federal University, N. I. Lobachevsky Institute of Mathematics and Mechanics, Kremlyovskaya 35, Kazan, 420008, Russia
*
Email address for correspondence: dmaklak@kpfu.ru

Abstract

We study progressive gravity waves at the interface between two unbounded fluids of different densities. The main concern is to find almost limiting configurations for the so-called overhanging waves. The latter were first computed by Meiron & Saffman (J. Fluid Mech., vol. 129, 1983, pp. 213–218). By means of the Hopf lemma, we rigorously prove that, if $\unicode[STIX]{x1D703}$ is the angle between the tangent line to the interfacial curve and the horizontal direction, then $-\unicode[STIX]{x03C0}<\unicode[STIX]{x1D703}<\unicode[STIX]{x03C0}$. This inequality allows us to put forward a criterion of proximity of the interface to the limiting configuration, namely, the angle $|\unicode[STIX]{x1D703}|_{max}$ must be close to $\unicode[STIX]{x03C0}$ but may not exceed $\unicode[STIX]{x03C0}$. We develop a new numerical method of computing interfacial waves based on the representation of a piecewise-analytic function to be found in such a manner that only the shape of the interface is unknown. All other hydrodynamic quantities can be expressed analytically in terms of functions describing this shape. Using this method, we compute almost limiting configurations of interfacial waves with $|\unicode[STIX]{x1D703}|_{max}>179.98^{\circ }$. Analysing the results of computations, we introduce two new concepts: an inner crest, and an inner solution near the inner crest. These concepts allow us to make a well-grounded prediction for the shapes of limiting interfacial configurations and confirm Saffman & Yuen’s (J. Fluid Mech., vol. 123, 1982, pp. 459–476) conjecture that the waves are geometrically limited.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, J. H., Nilson, E. N. & Walsh, J. L. 1967 Complex cubic splines. Trans. Am. Math. Soc. 129, 391413.Google Scholar
Ahlberg, J. H., Nilson, E. N. & Walsh, J. L. 1969 Properties of analytic splines (I). Complex polynomial splines. J. Math. Anal. Appl. 27, 262278.Google Scholar
Akers, B. F., Ambrose, D. M., Pond, K. & Wright, J. D. 2016 Overturned internal capillary–gravity waves. Eur. J. Mech. (B/Fluids) 57, 143151.Google Scholar
Amick, C. J., Fraenkel, L. E. & Toland, J. F. 1982 On the Stokes conjecture for the wave of extreme form. Acta Mathematica 148, 193214.Google Scholar
Atkinson, K. 1972 The numerical evaluation of the Cauchy transform on simple closed curves. SIAM J. Numer. Anal. 9 (2), 284299.Google Scholar
Crapper, G. D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech. 2 (6), 532540.Google Scholar
de Boor, C. 1978 A Practical Guide to Splines. Springer.Google Scholar
Gilbarg, D. & Trudinger, N. S. 2001 Elliptic Partial Differential Equations of Second Order. Springer.Google Scholar
Grimshaw, R. H. J. & Pullin, D. I. 1986 Extreme interfacial waves. Phys. Fluids 29 (9), 28022807.Google Scholar
Holyer, J. Y. 1979 Large amplitude progressive interfacial waves. J. Fluid Mech. 93, 433448.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Levi-Civita, T. 1925 Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann. 93, 264314.Google Scholar
Longuet-Higgins, M. S. & Fox, M. J. H. 1977 Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80, 721741.Google Scholar
Longuet-Higgins, M. S. & Fox, M. J. H. 1978 Theory of the almost-highest wave. Part 2. Matching and analytical extension. J. Fluid Mech. 85, 769786.Google Scholar
Longuet-Higgins, M. S. & Fox, M. J. H. 1996 Asymptotic theory for the almost-highest solitary wave. J. Fluid Mech. 317, 119.Google Scholar
Lu, J.-K. 1993 Boundary Value Problems for Analytic Functions. World Scientific.Google Scholar
Maklakov, D. V. 2002 Almost highest gravity waves on water of finite depth. Eur. J. Appl. Maths 13, 6793.Google Scholar
Meiron, D. I. & Saffman, P. G. 1983 Overhanging interfacial gravity waves of large amplitude. J. Fluid Mech. 129, 213218.Google Scholar
Muskheleshvili, N. I. 1972 Singular Integral Equations. Wolters–Noordhoff.Google Scholar
Pullin, D. I. & Grimshaw, R. 1983a Nonlinear interfacial progressive waves near a boundary in a Boussinesq fluid. Phys. Fluids 27, 897905.Google Scholar
Pullin, D. I. & Grimshaw, R. 1983b Interfacial progressive gravity waves in a two-layer shear flow. Phys. Fluids 26, 17311739.Google Scholar
Saffman, P. G. & Yuen, H. C. 1982 Finite-amplitude interfacial waves in the presence of a current. J. Fluid Mech. 123, 459476.Google Scholar
Schwartz, L. W. 1974 Computer extension and analytic continuation of Stokes expansion for gravity waves. J. Fluid Mech. 62, 553578.Google Scholar
Turner, R. E. L. & Vanden-Broeck, J.-M. 1986 The limiting configuration of interfacial gravity waves. Phys. Fluids 29 (2), 372375.Google Scholar