Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T22:41:02.607Z Has data issue: false hasContentIssue false

An experimental investigation of an unsteady adverse pressure gradient turbulent boundary layer: embedded shear layer scaling

Published online by Cambridge University Press:  23 February 2017

D. M. Schatzman
Affiliation:
US Army Aero-Flight-Dynamics Directorate, Ames Research Center, Moffett Field, CA 94035, USA
F. O. Thomas*
Affiliation:
Institute for Flow Physics and Control, University of Notre Dame, Notre Dame, IN 46556, USA
*
Email address for correspondence: fthomas@nd.edu

Abstract

An experimental investigation of an unsteady adverse pressure gradient turbulent boundary layer is described. It is demonstrated that the local flow physics is largely dominated by an inflectional instability which gives rise to an embedded shear layer contained within the boundary layer. Experimental measurements are presented which are fully consistent with the presence of clockwise spanwise-oriented coherent vorticity within the embedded shear layer. Using embedded shear layer scaling parameters in the form of the shear layer vorticity thickness and the velocity defect at the upper inflection point, both the mean and the phase-averaged boundary layer velocity profiles exhibit similarity in both space and time over a large wall-normal extent. In a similar manner, the profiles of the streamwise-component turbulence intensity and Reynolds stress also exhibit similarity when scaled with the embedded shear layer parameters. The embedded shear layer scaling of previously published adverse pressure gradient turbulent boundary layer measurements confirms its generic applicability in a wide range of flow-field geometries and extending to high Reynolds numbers.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. & Krogstad, P. A. 1992 Scaling the bursting period in turbulent rough wall boundary layers. Exp. Fluids 15 (1), 8284.Google Scholar
Bourassa, C. & Thomas, F. O. 2009 An experimental investigation of a highly accelerated turbulent boundary layer. J. Fluid Mech. 634, 359404.CrossRefGoogle Scholar
Carr, L. W.1981 A compilation of unsteady turbulent boundary layer experimental data. NACA Tech. Mem. 81317.CrossRefGoogle Scholar
Castillo, L. & George, W. K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39 (1), 4147.CrossRefGoogle Scholar
Coles, D. E. & Hirst, E. A. 1969 Computation of turbulent boundary layers – 1968. In AFOSR-IFP-Stanford Conference. Stanford University.Google Scholar
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.Google Scholar
Corke, T. C., Post, M. L. & Orlov, D. M. 2009 Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp. Fluids 46, 126.Google Scholar
Covert, E. E. & Lorber, P. F. 1984 Unsteady turbulent boundary layers in adverse pressure gradients. AIAA J. 22, 2228.Google Scholar
Dengel, P. & Fernholz, H. H. 1990 An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation. J. Fluid Mech. 212, 615636.Google Scholar
Despard, R. A. & Miller, J. A. 1971 Separation in oscillating laminar boundary-layer flows. J. Fluid Mech. 47, 2131.Google Scholar
Drazin, P. G. 2002 Introduction to Hydrodynamic Stability. Cambridge University Press.Google Scholar
Harun, Z., Monty, J. P. & Marusic, I. 2010 Constant adverse pressure gradient turbulent boundary layers. In 17th Australasian Fluid Mechanics Conference, Auckland, New Zealand.Google Scholar
Harun, Z., Monty, J. P., Mathis, R. & Marusic, I. 2013 Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477498.Google Scholar
George, W. K., Stanislas, M. & Laval, J.-P. 2012 New insights into adverse pressure gradient boundary layers. In Progress in Turbulence and Wind Energy IV, Proceedings of the iTi Conference in Turbulence 2010, vol. 141. Springer.Google Scholar
Gibson, M. M., Verriopoulos, C. A. & Vlachos, N. S. 1984 Turbulent boundary layer on a mildly curved convex surface. Exp. Fluids 2, 1724.CrossRefGoogle Scholar
Gutmark, E. & Ho, C. M. 1983 Preferred modes and the spreading rates of jets. Phys. Fluids 26 (10), 29322938.Google Scholar
Karlsson, S. K. F. 1959 An unsteady turbulent boundary layer. J. Fluid Mech. 5, 622636.CrossRefGoogle Scholar
Klebanoff, P. S.1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Tech. Rep. 1247.Google Scholar
Koromilas, C. A. & Telionis, D. P. 1980 Unsteady laminar separation: an experimental study. J. Fluid Mech. 97, 347384.CrossRefGoogle Scholar
Kovasznay, L. S. G. 1970 The turbulent boundary layer. Annu. Rev. Fluid Mech. 2, 95112.Google Scholar
Krogstad, P. A. & Skåre, P. E. 1995 Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer. Phys. Fluids 7, 20142024.CrossRefGoogle Scholar
Lee, J.-H. & Sung, H. J. 2009 Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101131.Google Scholar
Leishman, J. G. 2000 Principles of helicopter aerodynamics. Cambridge University Press.Google Scholar
Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481581.Google Scholar
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.Google Scholar
Marusic, I. & Perry, A. E. 1995 A wall wake model for the turbulent structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech. 298, 389407.Google Scholar
Monty, J. P., Harun, Z. & Marusic, I. 2011 A parametric study of adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 32, 575585.Google Scholar
Moreau, E. 2007 Airflow control by non-thermal plasma actuators. J. Phys. D: Appl. Phys. 40, 605636.Google Scholar
Muck, K. C., Hoffman, P. H. & Bradshaw, P. 1985 The effect of convex surface curvature on turbulent boundary layers. J. Fluid Mech. 161, 347396.Google Scholar
Nagano, Y., Tsuji, T. & Houra, T. 1998 Structure of turbulent boundary layer subjected to adverse pressure gradient. Intl J. Heat Fluid Flow 19, 563572.Google Scholar
Nagib, H. M. & Chauhan, K. A. 2008 Variation of the Karman coefficient in canonical flows. Phys. Fluids 20 (10), 15181528.CrossRefGoogle Scholar
Narasimha, R., Kumar, S. R., Prabhu, A. & Kailas, S. V. 2010 Turbulent flux events in a nearly neutral atmospheric boundary layer. Phil. Trans. R. Soc. Lond. A 365, 841858.Google Scholar
Oster, D. & Wygnanski, I. 1982 The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91130.CrossRefGoogle Scholar
Parikh, P. G., Reynolds, W. C. & Jayaraman, R. 1982 Behavior of an unsteady turbulent boundary layer. AIAA J. 20, 769775.Google Scholar
Patel, M. P., Ng, T. T., Vasudevan, S., Corke, T. C., Post, M. L., Mclaughlin, T. E. & Suchomel, C. F. 2008 Scaling effects of an aerodynamic plasma actuator. AIAA J. 45, 223236.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Samuel, A. E. & Joubert, P. N. 1974 A boundary layer developing in an increasingly adverse pressure gradient. J. Fluid Mech. 66 (3), 481505.CrossRefGoogle Scholar
Sears, W. R. & Telionis, D. P. 1975 Boundary layer separation in unsteady flow. SIAM J. Appl. Maths 28 (1), 215235.Google Scholar
Seifert, A., Bachar, T., Koss, D., Shepshelovich, D. & Wygnanski, I. 1993 Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J. 31, 20522060.Google Scholar
Seifert, A., Darabi, A. & Wygnanski, I. 1996 Delay of airfoil stall by periodic excitation. AIAA J. 33, 691698.Google Scholar
Seifert, A. & Pack, L. G. 1999 Oscillatory control of separation at high Reynolds number. AIAA J. 37, 10631071.Google Scholar
Shah, S. I., Laval, J. P. & Stanislas, M.2009 A specific behaviour of adverse pressure gradient near wall flows. In Proceedings of WALLTURB International Workshop, 21–23 April 2009, Lille, France.Google Scholar
Simpson, R. L. 1996 Aspects of turbulent boundary-layer separation. Prog. Aerosp. Sci. 32, 457521.Google Scholar
Skåre, P. E. & Krogstad, P. A. 1994 A turbulent equilibrium boundary layer near separation. J. Fluid Mech. 272, 319348.Google Scholar
Song, S., Degraaff, D. B. & Eaton, J. K. 2000 Experimental study of a separating, reattaching, and redeveloping flow over a smoothly contoured ramp. Intl J. Heat Fluid Flow 21, 512519.CrossRefGoogle Scholar
Song, S. & Eaton, J. K. 2004 Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. Exp. Fluids 36, 246258.Google Scholar
Sonnenberger, R., Graichen, K. & Erk, P. 2000 Fourier averaging: a phase-averaging method for periodic flow. Exp. Fluids 28, 217224.CrossRefGoogle Scholar
Spalart, P. R. & Watmuff, J. H. 1993 Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337371.Google Scholar
Thomas, F. O. 1991 Structure of mixing layers and jets. Appl. Mech. Rev. 44 (3), 119153.Google Scholar
Thomas, F. O., Corke, T. C., Iqbal, I., Kozlov, A. & Schatzmam, D. 2009 Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA J. 47 (9), 21692178.Google Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.Google Scholar
Willmarth, W. W. & Lu, S. S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 6592.Google Scholar
Wygnanski, I., Champagne, F. & Marasli, B. 1986 On the large-scale structures in two-dimensional, small-deficit, turbulent wakes. J. Fluid Mech. 168, 3171.Google Scholar
Zaragola, M. V. & Smits, A. J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.Google Scholar