Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T23:32:46.124Z Has data issue: false hasContentIssue false

Analytic inclined flow rule for determining granular rheology under strong non-local effects

Published online by Cambridge University Press:  23 October 2023

Keng-Lin Lee*
Affiliation:
Department of Mechanical Engineering, National Chung Hsing University, Taichung 402, Taiwan
*
Email address for correspondence: kllee@dragon.nchu.edu.tw

Abstract

This study theoretically establishes a flow rule for a granular flow down a rough inclined plane, capable of determining granular rheology in the presence of strong non-local effects resulting from grain cooperativity. To describe the non-local rheology, a Landau–Ginzburg model is formulated in terms of the fluidisation parameter represented by the granular inertial number. The exact solutions of the inertial-number field are solved and provide physical insights into the evolution of the internal rheology and the flow arrest process controlled by the flow height. Through asymptotic analysis in the regime dominated by strong non-locality, the exact solutions are further reduced to yield an analytical flow rule for the mean flow velocity. A comparison between the prediction of the flow rule and experimental data from the literature for sand grains determines the underlying rheology law and the relevant rheological parameters. Thus, the proposed flow rule serves as an effective tool for inferring granular rheology from strongly non-local inclined flow data, surpassing the limitations of the classical flow rule deduced from the local rheology framework.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I.A. 1964 Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular Media: Between Fluid and Solid. Cambridge University Press.CrossRefGoogle Scholar
Aranson, I.S. & Tsimring, L.S. 2002 Continuum theory of partially fluidized granular flows. Phys. Rev. E 65, 061303.CrossRefGoogle ScholarPubMed
Aranson, I.S., Tsimring, L.S., Malloggi, F. & Clément, E. 2008 Nonlocal rheological properties of granular flows near a jamming limit. Phys. Rev. E 78 (3), 031303.CrossRefGoogle Scholar
Azéma, E., Descantes, Y., Roquet, N., Roux, J.-N. & Chevoir, F. 2012 Discrete simulation of dense flows of polyhedral grains down a rough inclined plane. Phys. Rev. E 86, 031303.CrossRefGoogle Scholar
Barker, T., Zhu, C. & Sun, J. 2022 Exact solutions for steady granular flow in vertical chutes and pipes. J. Fluid Mech. 930, A21.CrossRefGoogle Scholar
Börzsönyi, T. & Ecke, R.E. 2007 Flow rule of dense granular flows down a rough incline. Phys. Rev. E 76, 031301.CrossRefGoogle Scholar
Bouzid, M., Izzet, A., Trulsson, M., Clément, E., Claudin, P. & Andreotti, B. 2015 Non-local rheology in dense granular flows. Eur. Phys. J. E 38 (11), 125.CrossRefGoogle ScholarPubMed
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111, 238301.CrossRefGoogle ScholarPubMed
Campbell, C.S. 2006 Granular material flows – an overview. Powder Technol. 162 (3), 208229.CrossRefGoogle Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.CrossRefGoogle ScholarPubMed
Deboeuf, S., Lajeunesse, E., Dauchot, O. & Andreotti, B. 2006 Flow rule, self-channelization, and levees in unconfined granular flows. Phys. Rev. Lett. 97, 158303.CrossRefGoogle ScholarPubMed
Edwards, A.N., Russell, A.S., Johnson, C.G. & Gray, J.M.N.T. 2019 Frictional hysteresis and particle deposition in granular free-surface flows. J. Fluid Mech. 875, 10581095.CrossRefGoogle Scholar
Fazelpour, F., Tang, Z. & Daniels, K.E. 2022 The effect of grain shape and material on the nonlocal rheology of dense granular flows. Soft Matt. 18, 14351442.CrossRefGoogle ScholarPubMed
Félix, G. & Thomas, N. 2004 Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221 (1), 197213.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2003 Long-surface-wave instability in dense granular flows. J. Fluid Mech. 486, 2150.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40 (1), 124.CrossRefGoogle Scholar
GDR-Midi 2004 On dense granular flows. Eur. Phys. E 14, 341365.CrossRefGoogle Scholar
Govender, I. 2016 Granular flows in rotating drums: a rheological perspective. Miner. Engng 92, 168175.CrossRefGoogle Scholar
Gray, J.M.N.T. & Edwards, A.N. 2014 A depth-averaged $\mu (i)$-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503534.CrossRefGoogle Scholar
Jenkins, J.T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18, 103307.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.CrossRefGoogle ScholarPubMed
Kamrin, K. & Henann, D.L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11, 179185.CrossRefGoogle ScholarPubMed
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301.CrossRefGoogle ScholarPubMed
Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F. 2009 Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E 79, 021306.CrossRefGoogle ScholarPubMed
Lee, K.-L. & Yang, F.-L. 2017 Relaxation-type nonlocal inertial-number rheology for dry granular flows. Phys. Rev. E 96, 062909.CrossRefGoogle ScholarPubMed
Malloggi, F., Andreotti, B. & Clément, E. 2015 Nonlocal effects in sand flows on an inclined plane. Phys. Rev. E 91, 052202.CrossRefGoogle Scholar
Mandal, S. & Khakhar, D.V. 2016 A study of the rheology of planar granular flow of dumbbells using discrete element method simulations. Phys. Fluids 28 (10), 103301.CrossRefGoogle Scholar
Mowlavi, S. & Kamrin, K. 2021 Interplay between hysteresis and nonlocality during onset and arrest of flow in granular materials. Soft Matt. 17, 73597375.CrossRefGoogle ScholarPubMed
Pouliquen, O. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11 (3), 542548.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans. R. Soc. A Math. Phys. Engng Sci. 367 (1909), 50915107.CrossRefGoogle ScholarPubMed
Reddy, K.A., Forterre, Y. & Pouliquen, O. 2011 Evidence of mechanically activated processes in slow granular flows. Phys. Rev. Lett. 106, 108301.CrossRefGoogle ScholarPubMed
Salerno, K.M., Bolintineanu, D.S., Grest, G.S., Lechman, J.B., Plimpton, S.J., Srivastava, I. & Silbert, L.E. 2018 Effect of shape and friction on the packing and flow of granular materials. Phys. Rev. E 98, 050901.CrossRefGoogle Scholar
Silbert, L, Landry, J. & Grest, G. 2003 Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids 15, 110.CrossRefGoogle Scholar
Zhang, Q. & Kamrin, K. 2017 Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118, 058001.CrossRefGoogle ScholarPubMed