Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T20:37:12.197Z Has data issue: false hasContentIssue false

Anisotropic electro-osmotic flow over super-hydrophobic surfaces

Published online by Cambridge University Press:  11 February 2010

SUPREET S. BAHGA
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
OLGA I. VINOGRADOVA
Affiliation:
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, 119991 Moscow, Russia
MARTIN Z. BAZANT*
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA Departments of Chemical Engineering and Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: bazant@mit.edu

Abstract

Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either homogeneous flat surfaces or patterned surfaces with thin double layers (compared with the texture correlation length) and thus predict simple surface-averaged, isotropic flows (independent of orientation). By analysing electro-osmotic flows over striped slip-stick surfaces with arbitrary double-layer thickness, we show that surface anisotropy generally leads to a tensorial electro-osmotic mobility and subtle, nonlinear averaging of surface properties. Interestingly, the electro-osmotic mobility tensor is not simply related to the hydrodynamic slip tensor, except in special cases. Our results imply that significantly enhanced electro-osmotic flows over super-hydrophobic surfaces are possible, but only with charged liquid–gas interfaces.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ajdari, A. 2001 Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries. Phys. Rev. E 65, 016301.Google Scholar
Ajdari, A. & Bocquet, L. 2006 Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys. Rev. Lett. 96, 186102.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in stokes flow. J. Fluid Mech. 44, 419440.CrossRefGoogle Scholar
Bazant, M. Z. & Vinogradova, O. I. 2008 Tensorial hydrodynamic slip. J. Fluid Mech. 613, 125134.CrossRefGoogle Scholar
Bocquet, L. & Barrat, J. L. 2007 Flow boundary conditions from nano- to micro-scales. Soft Matter 3, 685693.Google Scholar
Buch, V., Milet, A., Vácha, R., Jungwirth, P. & Devlin, J. P. 2007 Water surface is acidic. PNAS 104, 7342.Google Scholar
Chu, K. T. & Bazant, M. Z. 2007 Surface conservation laws at microscopically diffuse interfaces. J. Colloid Interface Sci. 315, 319329.CrossRefGoogle ScholarPubMed
Cottin-Bizonne, C., Barentin, C., Charlaix, E., Bocquet, L. & Barrat, J. L. 2004 Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamic simulations and hydrodynamic description. Eur. Phys. J. E 15, 427.Google Scholar
Cottin-Bizonne, C., Barrat, J. L., Bocquet, L. & Charlaix, E. 2003 Low-friction flows of liquid at nanopatterned interfaces. Nat. Mater. 2, 237240.CrossRefGoogle ScholarPubMed
Cottin-Bizonne, C., Cross, B., Steinberger, A. & Charlaix, E. 2005 Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94, 056102.CrossRefGoogle ScholarPubMed
Feuillebois, F., Bazant, M. Z. & Vinogradova, O. I. 2009 Effective slip over superhydrophobic surfaces in thin channels. Phys. Rev. Lett. 102, 026001.Google Scholar
Groot, S. R. De & Mazur, P. 1962 Non-Equilibrium Thermodynamics. Interscience.Google Scholar
van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C. & Dekker, C. 2006 Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 6, 22322237.CrossRefGoogle ScholarPubMed
Huang, D. M., Cottin-Bizzone, C., Ybert, C. & Bocquet, L. 2008 Massive amplification of surface-induced transport at superhydrophobic surfaces. Phys. Rev. Lett. 20, 092105.Google Scholar
Joly, L., Ybert, C., Trizac, E. & Bocquet, L. 2004 Hydrodynamics within the electric double layer on slipping surfaces. Phys. Rev. Lett. 93, 257805.Google ScholarPubMed
Joseph, P., Cottin-Bizonne, C, Benoǐ, J. M., Ybert, C., Journet, C., Tabeling, P. & Bocquet, L. 2006 Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97, 156104.CrossRefGoogle ScholarPubMed
Jungwirth, P. & Tobias, D. J. 2006 Specific ion effects at the air/water interface. Chem. Rev. 106, 12591281.Google Scholar
Kamrin, K., Bazant, M. Z. & Stone, H. A. 2009 Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor, arXiv: 0911.1328.Google Scholar
Khair, A. S. & Squires, T. M. 2009 The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluids 21, 042001.CrossRefGoogle Scholar
Krupenkin, T. N., Taylor, J. A., Schneider, T. M. & Yang, S. 2004 From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20, 38243827.Google Scholar
Lauga, E., Brenner, M. P. & Stone, H. A. 2007 Handbook of Experimental Fluid Dynamics, chap. 19, pp. 1219–1240. Springer.Google Scholar
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven stokes flow. J. Fluid Mech. 489, 5577.Google Scholar
Muller, V. M., Sergeeva, I. P., Sobolev, V. D. & Churaev, N. V. 1986 Boundary effects in the theory of electrokinetic phenomena. Colloid J. USSR 48, 606614.Google Scholar
Ou, J. & Rothstein, J. P. 2005 Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids 17, 103606.CrossRefGoogle Scholar
Ramos, A., González, A., Castellanos, A., Green, N. G. & Morgan, H. 2003 Pumping of liquids with AC voltages applied to asymmetric pairs of microelectrodes. Phys. Rev. E 67, 056302.Google Scholar
Sbragaglia, M. & Prosperetti, A. 2007 A note on the effective slip properties. Phys. Fluids 19, 043603.CrossRefGoogle Scholar
Shchekin, A. K. & Borisov, V. V. 2005 Thermodynamics of nucleation on the particles of salts-strong electrolytes: the allowance for ion adsorption in the droplet surface layer. Colloid J. 67, 774787.Google Scholar
Sneddon, I. N. 1966 Mixed Boundary Value Problems in Potential Theory. North-Holland.Google Scholar
Squires, T. M. 2008 Electrokinetic flows over inhomogeneously slipping surfaces. Phys. Fluids 20, 092105.Google Scholar
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977.Google Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices. Annu. Rev. Fluid Mech. 36, 381411.Google Scholar
Takahashi, M. 2005 ζ potential of microbubbles in aqueous solutions: electrical properties of the gas–water interface. J. Phys. Chem. B 109, 2185821864.CrossRefGoogle ScholarPubMed
Vinogradova, O. I. 1995 Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11, 2213.Google Scholar
Vinogradova, O. I. 1999 Slippage of water over hydrophobic surfaces. Intl J. Miner. Proc. 56, 3160.CrossRefGoogle Scholar
Vinogradova, O. I., Bunkin, N. F., Churaev, N. V., Kiseleva, O. A., Lobeyev, A. V. & Ninham, B. W. 1995 Submicrocavity structure of water between hydrophobic and hydrophilic walls as revealed by optical cavitation. J. Colloid Interface Sci. 173, 443447.CrossRefGoogle Scholar
Vinogradova, O. I., Koynov, K., Best, A. & Feuillebois, F. 2009 Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation. Phys. Rev. Lett. 102, 118302.CrossRefGoogle ScholarPubMed
Vinogradova, O. I. & Yakubov, G. E. 2003 Dynamic effects on force measurements. 2. Lubrication and the atomic force microscope. Langmuir 19, 12271234.CrossRefGoogle Scholar
Zangi, R. & Engberts, J. B. F. N. 2005 Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface. J. Am. Chem. Soc. 127, 22722276.CrossRefGoogle ScholarPubMed