Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T00:33:35.716Z Has data issue: false hasContentIssue false

Buoyancy statistics in moist turbulent Rayleigh–Bénard convection

Published online by Cambridge University Press:  07 April 2010

JÖRG SCHUMACHER*
Affiliation:
Institut für Thermo- und Fluiddynamik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany
OLIVIER PAULUIS
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185, USA
*
Email address for correspondence: joerg.schumacher@tu-ilmenau.de

Abstract

We study shallow moist Rayleigh–Bénard convection in the Boussinesq approximation in three-dimensional direct numerical simulations. The thermodynamics of phase changes is approximated by a piecewise linear equation of state close to the phase boundary. The impact of phase changes on the turbulent fluctuations and the transfer of buoyancy through the layer is discussed as a function of the Rayleigh number and the ability to form liquid water. The enhanced buoyancy flux due to phase changes is compared with dry convection reference cases and related to the cloud cover in the convection layer. This study indicates that the moist Rayleigh–Bénard problem offers a practical framework for the development and evaluation of parameterizations for atmospheric convection.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Bretherton, C. S. 1987 A theory for nonprecipitating moist convection between two parallel plates. Part I. Thermodynamics and ‘linear” solutions. J. Atmos. Sci. 44, 18091827.2.0.CO;2>CrossRefGoogle Scholar
Bretherton, C. S. 1988 A theory for nonprecipitating moist convection between two parallel plates. Part II. Nonlinear theory and cloud field organization. J. Atmos. Sci. 45, 23912415.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. 1994 Atmospheric Convection. Oxford University Press.CrossRefGoogle Scholar
Emran, M. S. & Schumacher, J. 2008 Fine-scale statistics of temperature and its derivatives in convective turbulence. J. Fluid Mech. 611, 1334.CrossRefGoogle Scholar
Heintzenberg, J. & Charlson, R. J. 2009 Clouds in the Perturbed Climate System. MIT Press.CrossRefGoogle Scholar
Oresta, P., Verzicco, R., Lohse, D. & Prosperetti, A. 2009 Heat transfer mechanisms in bubbly Rayleigh–Bénard convection. Phys. Rev. E 80, 026304.CrossRefGoogle ScholarPubMed
Pauluis, O. 2008 Thermodynamic consistency of the anelastic approximation for a moist atmosphere. J. Atmos. Sci. 65, 27192729.CrossRefGoogle Scholar
Pauluis, O. & Schumacher, J. 2010 Idealized moist Rayleigh–Bénard convection with piecewise linear equation of state. Commun. Math. Sci. 8, 295319.CrossRefGoogle Scholar
van Reeuwijk, M., Jonker, H. J. J. & Hanjalić, K. 2008 Wind and boundary layers in Rayleigh–Bénard convection. Part I. Analysis and modelling. Phys. Rev. E 77, 036311.CrossRefGoogle Scholar
Rogers, R. R. & Yau, M. K. 1989 A Short Course in Cloud Physics, 3rd edn. Butterworth-Heinemann.Google Scholar
Schumacher, J. 2009 Lagrangian studies in convective turbulence. Phys. Rev. E 79, 056301.CrossRefGoogle ScholarPubMed
Stevens, B. 2005 Moist convection. Annu. Rev. Earth Planet. Sci. 33, 605643.CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.CrossRefGoogle Scholar
Zhong, J.-Q., Funfschilling, D. & Ahlers, G. 2009 Enhanced heat transport by turbulent two-phase Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 124501.CrossRefGoogle ScholarPubMed