Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T20:29:27.209Z Has data issue: false hasContentIssue false

Can weakly nonlinear theory explain Faraday wave patterns near onset?

Published online by Cambridge University Press:  22 July 2015

A. C. Skeldon*
Affiliation:
Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, UK
A. M. Rucklidge
Affiliation:
Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
*
Email address for correspondence: a.skeldon@surrey.ac.uk

Abstract

The Faraday problem is an important pattern-forming system that provides some middle ground between systems where the initial instability involves just a single mode, and in which complexity then results from mode interactions or secondary bifurcations, and cases where a system is highly turbulent and many spatial and temporal modes are excited. It has been a rich source of novel patterns and of theoretical work aimed at understanding how and why such patterns occur. Yet it is particularly challenging to tie theory to experiment: the experiments are difficult to perform; the parameter regime of interest (large box, moderate viscosity) along with the technical difficulties of solving the free-boundary Navier–Stokes equations make numerical solution of the problem hard; and the fact that the instabilities result in an entire circle of unstable wavevectors presents considerable theoretical difficulties. In principle, weakly nonlinear theory should be able to predict which patterns are stable near pattern onset. In this paper we present the first quantitative comparison between weakly nonlinear theory of the full Navier–Stokes equations and (previously published) experimental results for the Faraday problem with multiple-frequency forcing. We confirm that three-wave interactions sit at the heart of why complex patterns are stabilised, but also highlight some discrepancies between theory and experiment. These suggest the need for further experimental and theoretical work to fully investigate the issues of pattern bistability and the role of bicritical/tricritical points in determining bifurcation structure.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alnahdi, A. S., Niesen, J. & Rucklidge, A. M. 2014 Localized patterns in periodically forced systems. SIAM J. Appl. Dyn. Syst. 13, 13111327.CrossRefGoogle Scholar
Arbell, H. & Fineberg, J. 1998 Spatial and temporal dynamics of two interacting modes in parametrically driven surface waves. Phys. Rev. Lett. 81, 43844387.CrossRefGoogle Scholar
Arbell, H. & Fineberg, J. 2000 Temporally harmonic oscillons in Newtonian fluids. Phys. Rev. Lett. 85, 756759.Google Scholar
Arbell, H. & Fineberg, J. 2002 Pattern formation in two-frequency forced parametric waves. Phys. Rev. E 65, 036224.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of a plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Besson, T., Edwards, W. S. & Tuckerman, L. S. 1996 Two-frequency parametric excitation of surface waves. Phys. Rev. E 54, 507513.Google Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.Google Scholar
Chen, P. & Viñals, J. 1999 Amplitude equation and pattern selection in Faraday waves. Phys. Rev. E 60, 559570.CrossRefGoogle ScholarPubMed
Christiansen, B., Alström, P. & Levinsen, M. T. 1992 Ordered capillary-wave states: quasicrystals, hexagons, and radial waves. Phys. Rev. Lett. 68, 21572160.CrossRefGoogle Scholar
Ding, Y.2006 Pattern formation in multi-frequency driven fluid surface waves. PhD thesis, Northwestern University.Google Scholar
Ding, Y. & Umbanhowar, P. 2006 Enhanced Faraday pattern stability with three-frequency drive. Phys. Rev. E 73, 046305.CrossRefGoogle Scholar
Dionne, B., Silber, M. & Skeldon, A. C. 1997 Stability results for steady, spatially periodic planforms. Nonlinearity 10, 321353.CrossRefGoogle Scholar
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.CrossRefGoogle Scholar
Epstein, T. & Fineberg, J. 2004 Control of spatiotemporal disorder in parameterically excited surface waves. Phys. Rev. Lett. 92, 244502.Google Scholar
Epstein, T. & Fineberg, J. 2006 Grid states and nonlinear selection in parametrically excited surface waves. Phys. Rev. E 73, 055302.Google Scholar
Faraday, M. 1831 On the forms and states of fluids on vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 319340.Google Scholar
Iooss, G. & Rucklidge, A. M. 2010 On the existence of quasipattern solutions for the Swift–Hohenberg equation. J. Nonlinear Sci. 20, 361394.CrossRefGoogle Scholar
Kahouadji, L., Périnet, N., Tuckerman, L. S., Shin, S., Chergui, J. & Juric, D. 2015 Numerical simulation of super-square patterns in Faraday waves. J. Fluid Mech. 772, R2.Google Scholar
Kudrolli, A., Pier, B. & Gollub, J. P. 1998 Superlattice patterns in surface waves. Physica D 123, 99111.Google Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.CrossRefGoogle Scholar
Lifshitz, R. & Petrich, D. M. 1997 Theoretical model for Faraday waves with multiple-frequency forcing. Phys. Rev. Lett. 79, 12611264.Google Scholar
Malkus, M. V. R. & Veronis, G. 1958 Finite amplitude cellular convection. J. Fluid Mech. 4, 225260.Google Scholar
Melbourne, I. 1999 Steady-state bifurcation with Euclidean symmetry. Trans. Am. Math. Soc. 351, 15751603.CrossRefGoogle Scholar
Müller, H. W. 1994 Model equations for two-dimensional quasipatterns. Phys. Rev. E 49, 12731277.Google Scholar
Périnet, N., Juric, D. & Tuckerman, L. 2009 Numerical simulation of Faraday waves. J. Fluid Mech. 635, 126.CrossRefGoogle Scholar
Périnet, N., Juric, D. & Tuckerman, L. 2012 Alternating hexagonal and striped patterns in Faraday surface waves. Phys. Rev. Lett. 109, 164501.CrossRefGoogle ScholarPubMed
Porter, J. & Silber, M. 2002 Broken symmetries and pattern formation in two-frequency forced Faraday waves. Phys. Rev. Lett. 89, 054501.Google Scholar
Porter, J., Topaz, C. M. & Silber, M. 2004 Pattern control via multifrequency parametric forcing. Phys. Rev. Lett. 93, 034502.Google Scholar
Riyapan, P.2012 Mode interactions and superlattice patterns. PhD thesis, University of Leeds.Google Scholar
Rogers, J. L., Schatz, M. F., Brausch, O. & Pesch, W. 2000 Superlattice patterns in vertically oscillated Rayleigh–Bénard convection. Phys. Rev. Lett. 85, 42814284.Google Scholar
Rucklidge, A. M. & Rucklidge, W. J. 2003 Convergence properties of the 8, 10 and 12 mode representations of quasipatterns. Physica D 178, 6282.Google Scholar
Rucklidge, A. M. & Silber, M. 2009 Design of parametrically forced patterns and quasipatterns. SIAM J. Appl. Dyn. Syst. 8, 298347.Google Scholar
Rucklidge, A. M., Silber, M. & Skeldon, A. C. 2012 Three-wave interactions and spatiotemporal chaos. Phys. Rev. Lett. 108, 074504.Google Scholar
Segel, L. A. & Stuart, J. T. 1962 On the question of the preferred mode in cellular thermal convection. J. Fluid Mech. 13, 289306.Google Scholar
Silber, M. & Proctor, M. R. E. 1998 Nonlinear competition between small and large hexagonal patterns. Phys. Rev. Lett. 81, 24502453.CrossRefGoogle Scholar
Silber, M. & Skeldon, A. C. 1999 Parametrically excited surface waves: Two-frequency forcing, normal form symmetries, and pattern selection. Phys. Rev. E 59, 54465456.Google Scholar
Silber, M., Topaz, C. & Skeldon, A. C. 2000 Two-frequency forced Faraday waves: weakly damped modes and pattern selection. Physica D 143, 205225.Google Scholar
Simonelli, F. & Gollub, J. P. 1989 Surface wave mode interactions: effects of symmetry and degeneracy. J. Fluid Mech. 199, 471494.Google Scholar
Skeldon, A. C. & Guidoboni, G. 2007 Pattern selection for Faraday waves in an incompressible viscous fluid. SIAM J. Appl. Maths 67, 10641100.CrossRefGoogle Scholar
Skeldon, A. C. & Porter, J. 2011 Scaling properties of weakly nonlinear coefficients in the Faraday problem. Phys. Rev. E 84, 016209.Google Scholar
Skeldon, A. C. & Silber, M. 1998 New stability results for patterns in a model of long-wavelength convection. Physica D 122, 117133.Google Scholar
Topaz, C., Porter, J. & Silber, M. 2004 Multifrequency control of Faraday wave patterns. Phys. Rev. E 70, 066206.Google Scholar
Westra, M.-T., Binks, D. J. & van de Water, W. 2003 Patterns of Faraday waves. J. Fluid Mech. 496, 132.CrossRefGoogle Scholar
Zhang, W. & Viñals, J. 1997 Pattern formation in weakly damped parametric surface waves. J. Fluid Mech. 336, 301330.Google Scholar