Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T04:43:29.385Z Has data issue: false hasContentIssue false

Capillary hysteresis in sloshing dynamics: a weakly nonlinear analysis

Published online by Cambridge University Press:  05 January 2018

Francesco Viola
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Lausanne,  CH-1015, Switzerland
P.-T. Brun
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Lausanne,  CH-1015, Switzerland Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
François Gallaire*
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne, Lausanne,  CH-1015, Switzerland
*
Email address for correspondence: francois.gallaire@epfl.ch

Abstract

The sloshing of water waves in a vertical cylindrical tank is an archetypal damped oscillator in fluid mechanics. The wave frequency is traditionally derived in the potential flow limit (Lamb, Hydrodynamics, Cambridge University Press, 1932), and the damping rate results from the combined effects of the viscous dissipation at the wall, in the bulk and at the free surface (Case & Parkinson, J. Fluid Mech., vol. 2, 1957, pp. 172–184). Still, the classic theoretical prediction accounting for these effects significantly underestimates the damping rate when compared to careful laboratory experiments (Cocciaro et al., J. Fluid Mech., vol. 246, 1993, pp. 43–66). Specifically, theory provides a unique value for the damping rate, while experiments reveal that the damping increases as the sloshing amplitude decreases. Here, we investigate theoretically the effects of capillarity at the contact line on the decay time of capillary–gravity waves. To this end, we marry a model for the inviscid waves to a nonlinear empiric law for the contact line that incorporates contact angle hysteresis. The resulting system of equations is solved by means of a weakly nonlinear analysis using the method of multiple scales. Capillary effects have a dramatic influence on the calculated damping rate, especially when the sloshing amplitude gets small: this nonlinear interfacial term increases in the limit of zero wave amplitude. In contrast to viscous damping, where the wave motion decays exponentially, the contact angle hysteresis can act as Coulomb solid friction, thus yielding the arrest of the contact line in a finite time.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: PoF, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.

References

Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225 (1163), 505515.Google Scholar
Case, K. M. & Parkinson, W. C. 1957 Damping of surface waves in an incompressible liquid. J. Fluid Mech. 2 (2), 172184.10.1017/S0022112057000051Google Scholar
Cocciaro, B., Faetti, S. & Nobili, M. 1991 Capillarity effects on surface gravity waves in a cylindrical container: wetting boundary conditions. J. Fluid Mech. 231, 325343.Google Scholar
Cocciaro, B., Faetti, S., Nobili, M. & Festa, C. 1993 Experimental investigation of capillarity effects on surface gravity waves: non-wetting boundary conditions. J. Fluid Mech. 246, 4366.Google Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.10.1017/S0022112086000332Google Scholar
Dussan, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11 (1), 371400.Google Scholar
Eral, H. B., ’t Mannetje, J. C. M. & Oh, J. M. 2013 Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291 (2), 247260.Google Scholar
de Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.Google Scholar
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2002 Gouttes, Bulles, Perles et Ondes. Belin.Google Scholar
Heinrichs, W. 2004 Spectral collocation schemes on the unit disc. J. Comput. Phys. 199 (1), 6686.Google Scholar
Hocking, L. M. 1987 The damping of capillary–gravity waves at a rigid boundary. J. Fluid Mech. 179, 253266.Google Scholar
Jiang, L., Perlin, M. & Schultz, W. W. 2004 Contact-line dynamics and damping for oscillating free surface flows. Phys. Fluids 16 (3), 748758.10.1063/1.1644151Google Scholar
Keulegan, G. H. 1959 Energy dissipation in standing waves in rectangular basins. J. Fluid Mech. 6 (1), 3350.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Le Grand, N., Daerr, A. & Limat, L. 2005 Shape and motion of drops sliding down an inclined plane. J. Fluid Mech. 541, 293315.Google Scholar
Leger, L. & Joanny, J. F. 1992 Liquid spreading. Rep. Prog. Phys. 55 (4), 431.Google Scholar
Miles, J. W. 1967 Surface-wave damping in closed basins. Proc. R. Soc. Lond. A 297, 459475.Google Scholar
Nayfeh, A. H. 2008 Perturbation Methods. Wiley.Google Scholar
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2004 Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur. Phys. J. E 14 (4), 395404.10.1140/epje/i2004-10021-5Google Scholar
Puthenveettil, B. A., Senthilkumar, V. K. & Hopfinger, E. J. 2013 Motion of drops on inclined surfaces in the inertial regime. J. Fluid Mech. 726, 2661.10.1017/jfm.2013.209Google Scholar
Rio, E., Daerr, A., Andreotti, B. & Limat, L. 2005 Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys. Rev. Lett. 94 (2), 024503.10.1103/PhysRevLett.94.024503Google Scholar
Sommariva, A. 2013 Fast construction of Fejér and Clenshaw–Curtis rules for general weight functions. Comput. Math. Applics. 65 (4), 682693.Google Scholar
Stuart, J. T. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9 (3), 353370.Google Scholar
Ursell, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214, 7997.Google Scholar
Viola, F., Arratia, C. & Gallaire, F. 2016a Mode selection in trailing vortices: harmonic response of the non-parallel batchelor vortex. J. Fluid Mech. 790, 523552.Google Scholar
Viola, F., Brun, P.-T., Dollet, B. & Gallaire, F. 2016b Foam on troubled water: capillary induced finite-time arrest of sloshing waves. Phys. Fluids 28 (9), 091701.Google Scholar
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.Google Scholar