Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T17:13:44.331Z Has data issue: false hasContentIssue false

Chaos in a linear array of vortices

Published online by Cambridge University Press:  26 April 2006

P. Tabeling
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France
O. Cardoso
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France
B. Perrin
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France

Abstract

An experimental study of the onset of chaos in a linear array of forced vortices is presented. The vortices are driven by electromagnetic forces in a layer of electrolyte. The system is found to behave like a chain of nonlinearly coupled oscillators, each oscillator being sustained by a pair of vortices. Systems with a small number of vortices exhibit scenarios characterized by a small number of degrees of freedom. Increasing the number of vortices leads to a rapid increase of the complexity of the regimes of transition to chaos. For moderately long systems, quasi-periodicity preceding the onset of chaos and intermittent behaviour is observed.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G. & Behringer, R. 1978 Evolution of turbulence from the Rayleigh–Bénard instability. Phys. Rev. Lett. 40, 712716.Google Scholar
Arnol'D, V. I. & Meshalkin, L. D. 1960 The seminar of A. N. Kolmogorov on selected topics in analysis (1958–1959). In Usp. Mat. Nauk 15, 247.Google Scholar
BergÉ, P. & Dubois, M. 1976 Time dependent velocity in Rayleigh–Bénard convection: a transition to turbulence. Opt. Comm. 19, 129133.Google Scholar
Bondarenko, N., Gak, M. & Dolzhanskii, F. 1979 Izv. Akad. Nauk SSSR Ser. Fiz Atmos. i Okeana 15, 1017.
ChatÉ, H. & Manneville, P. 1986 Transition to turbulence via spatio-temporal intermittency, Phys. Rev. Lett. 58, 112.Google Scholar
Chiffaudel, A., Fauve, S. & Perrin, B. 1989 Spatio-temporal dynamics of oscillatory convection at low Prandtl number: waves and defects. Phys. Rev. A (to appear).Google Scholar
Chomaz, J. M. 1985 Etude expérimentale et numérique d'une zone cisaillée circulaire: caractérisation des transitions entre modes. Thèse, Univerité Pierre et Marie Curie, Paris.
Ciliberto, S. & Bigazzi, P. 1988 Spatiotemporal intermittency in Rayleigh–Bénard convection. Phys. Rev. Lett. 60, 286289.Google Scholar
Croquette, V. & Williams, H. L. 1989 Nonlinear competition between waves on convective rolls. Phys. Rev. A (to appear).Google Scholar
Dubois, M., Da Silva, R., Daviaud, F., Bergé, P. & Petrov, A. 1989 Collective oscillating mode in a one dimensional chain of convective rolls. Europhys. Lett. 8, 135.Google Scholar
Fenstermacher, P. R., Swinney, H. L. & Gollub, J. P. 1979 Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech. 94, 103128.Google Scholar
Fujisaka, H. & Yamada, T. 1982 Stability theory of synchronized motion in coupled-oscillator systems II. Prog. Theor. Phys. 69, 3247.Google Scholar
Fujisaka, H. & Yamada, T. 1985 Stability theory of synchronized motion in coupled-oscillator systems II. Prog. Theor. Phys. 75, 10871104.Google Scholar
Gao, H., Metcalfe, G., Jung, T. & Behringer, R. P. 1987 Heat flow experiments in liquid 4He with a variable cylindrical geometry. J. Fluid Mech. 174, 209231.Google Scholar
Green, J. S. A. 1974 Two-dimensional turbulence near the viscous limit. J. Fluid. Mech. 62, 273287.Google Scholar
Kolodner, P., Bensimon, D. & Surko, C. M. 1988 Travelling-wave convection in an annulus. Phys. Rev. Lett. 60, 17231726.Google Scholar
Kolodner, P., Passner, A., Surko, C. M. & Walden, R. W. 1986 Onset of oscillatory convection in a binary fluid mixture. Phys. Rev. Lett. 56, 2621.Google Scholar
Kuramoto, Y. 1984 Chemical oscillations, waves and turbulence. Springer.
Maurer, J. & Libchaber, A. 1979 Rayleigh–Bénard experiment in liquid helium: frequency locking and the onset of turbulence. J. Phys. Lett. 40, L419L423.Google Scholar
Meshalkin, L. D. & Sinai, Ya. G. 1961 Investigation of the stability of the stationary solution of a system of plane motion equations of a viscous incompressible fluid. Prikl. Mat. Mekh. 25.Google Scholar
Nguyen Duc, J. M. 1988 Instabilité et turbulence dans des écoulements bidimensionnels MHD. Thèse, INPG, Grenoble.
Nguyen Duc, J.-M. & Sommeria, J. 1988 Experimental characterization of steady two-dimensional vortex couples. J. Fluid Mech. 192, 175192.Google Scholar
Pocheau, A., Croquette, V. & Le Gal, P. 1985 Turbulence in a cylindrical container of argon near threshold convection. Phys. Rev. Lett. 55, 10941097.Google Scholar
Pomeau, Y. & Manneville, P. 1979 Stability and fluctuations of a spatially periodic convective flow. J. Phys. Lett. 40, L609.Google Scholar
Rabaud, M. & Couder, Y. 1983 A shear flow instability in a circular geometry. J. Fluid Mech. 136, 291319.Google Scholar
Ruelle, D. & Takens, F. 1971 On the nature of turbulence. Commun. Math. Phys. 20, 167192.Google Scholar
She, Z. 1987 Instabilités et dynamique à grande échelle en turbulence; Thése, University of Paris 7.
Sivashinsky, G. I. 1983 Negative viscosity effect in large-scale turbulence; long-wave instability of a periodic system of eddies. Phys. Lett. 95 A, 152Google Scholar
Sivashinsky, G. 1985 Weak turbulence in periodic flows. Physica 17 D, 243255.Google Scholar
Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139168.Google Scholar
Steinberg, V., Moses, E. & Fineberg, J. 1987 Spatio temporal complexity at the onset of convection in a binary fluid. In The physics of Chaos and Systems far from Equilibrium (ed. M. Duong Van & B. Nichols). Nucl. Phys. B (Proc. Suppl.).
Tabeling, P., Fauve, S. & Perrin, B. 1987 Instability of a linear array of forced vortices. Europhys. Lett 4, 555560.Google Scholar
Walden, R. W., Kolodner, P., Passner, A. & Surko, C. M. 1985 Traveling waves and chaos in convection in binary fluid mixtures. Phys. Rev. Lett. 55, 496499.Google Scholar