Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T05:18:20.877Z Has data issue: false hasContentIssue false

A complex-valued resonance model for axisymmetric screech tones in supersonic jets

Published online by Cambridge University Press:  13 October 2021

Matteo Mancinelli*
Affiliation:
Département Fluides Thermique et Combustion, Institut Pprime - CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, 86962Chasseneuil-du-Poitou, Poitiers, France
Vincent Jaunet
Affiliation:
Département Fluides Thermique et Combustion, Institut Pprime - CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, 86962Chasseneuil-du-Poitou, Poitiers, France
Peter Jordan
Affiliation:
Département Fluides Thermique et Combustion, Institut Pprime - CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, 86962Chasseneuil-du-Poitou, Poitiers, France
Aaron Towne
Affiliation:
Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI48109, USA
*
Email address for correspondence: matteo.mancinelli@univ-poitiers.fr

Abstract

We model the resonance mechanism underpinning generation of A1 and A2 screech tones in an under-expanded supersonic jet. Starting from the resonance model recently proposed by Mancinelli et al. (Exp. Fluids, vol. 60, 2019, p. 22), where the upstream-travelling wave is a neutrally stable guided-jet mode, we here present a more complete linear-stability-based model for screech prediction. We study temperature and shear-layer thickness effects and show that, in order to accurately describe the experimental data, the effect of the finite thickness of the shear layer must be incorporated in the jet-dynamics model. We then present an improved resonance model for screech-frequency predictions in which both downstream- and upstream-travelling waves may have a complex wavenumber and frequency. This resonance model requires knowledge of the reflection coefficients at the upstream and downstream locations of the resonance loop. We explore the effect of the reflection coefficients on the resonance model and propose an approach for their identification. The complex-mode model identifies limited regions of frequency–flow parameter space for which the resonance loop is amplified in time, a necessary condition for the resonance to be sustained. This model provides an improved description of the experimental measurements.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bers, A. 1983 Space-time evolution of plasma instabilities-absolute and convective. In Basic Plasma Physics, vol. 1, p. 451. North-Holland.Google Scholar
Bogey, C. & Gojon, R. 2017 Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets. J. Fluid Mech. 823, 562591.CrossRefGoogle Scholar
Briggs, R.J. 1964 Electron-stream interaction with plasmas. Tech. Rep. MIT.CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets: a review. Intl J. Aeroacoust. 18, 118188.CrossRefGoogle Scholar
Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J. & Honnery, D. 2018 Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.CrossRefGoogle Scholar
Edgington-Mitchell, D., Oberleithner, K., Honnery, D.R. & Soria, J. 2014 Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822847.CrossRefGoogle Scholar
Edgington-Mitchell, D., Wang, T., Nogueira, P., Schmidt, O., Jaunet, V., Duke, D., Jordan, P. & Towne, A. 2021 a Waves in screeching jets. J. Fluid Mech. 913, A7.CrossRefGoogle Scholar
Edgington-Mitchell, D., Weightman, J., Lock, S., Kirby, R., Nair, V., Soria, J. & Honnery, D. 2021 b The generation of screech tones by shock leakage. J. Fluid Mech. 908, A46.CrossRefGoogle Scholar
Gao, J.H. & Li, X.D. 2010 A multi-mode screech frequency prediction formula for circular supersonic jets. J. Acoust. Soc. Am. 127 (3), 12511257.CrossRefGoogle ScholarPubMed
Gojon, R., Bogey, C. & Mihaescu, M. 2018 Oscillation modes in screeching jets. AIAA J. 56 (7), 29182924.CrossRefGoogle Scholar
Harper-Bourne, M. 1974 The noise from shock waves in supersonic jets-noise mechanism. Agard Cp-131 11, 113.Google Scholar
Jordan, P., Jaunet, V., Towne, A., Cavalieri, A.V.G., Colonius, T., Schmidt, O. & Agarwal, A. 2018 Jet-flap interaction tones. J. Fluid Mech. 853, 333358.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1958 Statistical Physics. Pergamon.Google Scholar
Lele, S.K. 2005 Phased array models of shock-cell noise sources. In 11th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2005-2841.CrossRefGoogle Scholar
Lessen, M., Fox, J.A. & Zien, H.M. 1965 On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid. J. Fluid Mech. 23 (2), 355367.CrossRefGoogle Scholar
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19 (2), 024102.CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2019 a Screech-tone prediction using upstream-travelling jet modes. Exp. Fluids 60 (1), 22.CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P., Towne, A. & Girard, S. 2019 b Reflection coefficients and screech-tone prediction in supersonic jets. In 25th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2019-2522.CrossRefGoogle Scholar
Manning, T. & Lele, S.K. 1997 Numerical simulations of shock-vortex interactions in supersonic jet screech. In 36th AIAA Aerospace Sciences Meeting and Exhibit, p. 282.Google Scholar
Mercier, B., Castelain, T. & Bailly, C. 2017 Experimental characterisation of the screech feedback loop in underexpanded round jets. J. Fluid Mech. 824, 202229.CrossRefGoogle Scholar
Merle, M. 1957 Nouvelles recherches sur les fréquences ultrasonores émises par les jets d'air. Ann. Telecommun. 12, 424426.CrossRefGoogle Scholar
Michalke, A. 1970 A note on the spatial jet-lnstability of the compressible cylindrical vortex sheet. Tech. Rep.. DLR.Google Scholar
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.CrossRefGoogle Scholar
Noble, B. 1958 Methods based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations. Pergamon.Google Scholar
Nogueira, P.A.S., Jaunet, V., Mancinelli, M., Jordan, P. & Edgington-Mitchell, D. 2021 Closure mechanism of the A1 and A2 modes in jet screech. arXiv:2107.06429Google Scholar
Pack, D.C. 1950 A note on Prandtl's formula for the wave-length of a supersonic gas jet. Q. J. Mech. Appl. Maths 3 (2), 173181.CrossRefGoogle Scholar
Panda, J. 1999 An experimental investigation of screech noise generation. J. Fluid Mech. 378, 7196.CrossRefGoogle Scholar
Panickar, P., Srinivasan, K & Raman, G. 2005 Nonlinear interactions as precursors to mode jumps in resonant acoustics. Phys. Fluids 17 (9), 096103.CrossRefGoogle Scholar
Powell, A. 1953 On the mechanism of choked jet noise. Proc. Phys. Soc. Lond. B 66, 1039.CrossRefGoogle Scholar
Powell, A., Umeda, Y. & Ishii, R. 1992 Observations of the oscillation modes of choked circular jets. J. Acoust. Soc. Am. 92 (5), 28232836.CrossRefGoogle Scholar
Raman, G. 1999 Supersonic jet screech: half-century from powell to the present. J. Sound Vib. 225 (3), 543571.CrossRefGoogle Scholar
Rienstra, S.W 2007 Acoustic scattering at a hard–soft lining transition in a flow duct. J. Engng Maths 59 (4), 451475.CrossRefGoogle Scholar
Rossiter, J.E. 1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech. Rep. 3438. Royal Aircraft Establishment.Google Scholar
Rowley, C.W., Colonius, T. & Basu, A.J. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Colonius, T., Cavalieri, A.V.G., Jordan, P. & Brès, G.A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 11531181.CrossRefGoogle Scholar
Shen, H. & Tam, C.K.W. 2002 Three-dimensional numerical simulation of the jet screech phenomenon. AIAA J. 40 (1), 3341.CrossRefGoogle Scholar
Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12 (2), 221233.CrossRefGoogle Scholar
Suzuki, T. & Lele, S.K. 2003 Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J. Fluid Mech. 490, 139167.CrossRefGoogle Scholar
Tam, C.K.W. & Ahuja, K.K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.CrossRefGoogle Scholar
Tam, C.K.W. & Hu, F.Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.CrossRefGoogle Scholar
Tam, C.K.W., Seiner, J.M. & Yu, J.C. 1986 Proposed relationship between broadband shock associated noise and screech tones. J. Sound Vib. 110 (2), 309321.CrossRefGoogle Scholar
Tam, C.K.W. & Tanna, H.K. 1982 Shock associated noise of supersonic jets from convergent-divergent nozzles. J. Sound Vib. 81 (3), 337358.CrossRefGoogle Scholar
Towne, A., Cavalieri, A.V.G., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V. & Brès, G.A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.CrossRefGoogle Scholar
Trefethen, L.N. 2000 Spectral Methods in MATLAB. SIAM.CrossRefGoogle Scholar
Umeda, Y. & Ishii, R. 2001 On the sound sources of screech tones radiated from choked circular jets. J. Acoust. Soc. Am. 110 (4), 18451858.CrossRefGoogle ScholarPubMed
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.CrossRefGoogle Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39 (6), 10961100.CrossRefGoogle Scholar
Willert, C.E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181193.CrossRefGoogle Scholar
Wong, M.H., Jordan, P., Maia, I.A., Cavalieri, A.V.G., Kirby, R., Fava, T.C.L. & Edgington-Mitchell, D. 2021 Wavepacket modelling of broadband shock-associated noise in supersonic jets. J. Fluid Mech. 918, A9.CrossRefGoogle Scholar