Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T04:46:34.111Z Has data issue: false hasContentIssue false

Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances

Published online by Cambridge University Press:  04 October 2023

Ming Yu*
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China Beijing Fluid Dynamics Scientific Research Center, Beijing 100011, PR China
QingQing Zhou
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
SiWei Dong
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
XianXu Yuan
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China Beijing Fluid Dynamics Scientific Research Center, Beijing 100011, PR China
ChunXiao Xu
Affiliation:
Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Email address for correspondence: yum16@tsinghua.org.cn

Abstract

In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall disturbances by exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall disturbances enforce extra Reynolds shear stress on the wall and induce mean streamline curvature in rough wall turbulence that leads to the intensification of turbulent motions in the outer region. The turbulent and fluctuating Mach numbers, the density and the velocity divergence fluctuation intensities suggest that the compressibility effects are enhanced by the increment of the free-stream Mach number and the implementation of the wall disturbances. The differences between the Reynolds and Favre average due to the density fluctuations constitute approximately $9\,\%$ of the mean velocity close to the wall and $30\,\%$ of the Reynolds stress near the edge of the boundary layer, indicating their non-negligibility in turbulent modelling strategies. The comparatively strong compressive events behaving as eddy shocklets are observed at the free-stream Mach number of $6$ only in the cases with wall disturbances. By further splitting the velocity into the solenoidal and dilatational components with the Helmholtz decomposition, we found that the dilatational motions are organized as travelling wave packets in the wall-parallel planes close to the wall and as forward inclined structures in the form of radiated waves in the vertical planes. Despite their increased magnitudes and higher portion in the Reynolds normal and shear stresses, the dilatational motions show no tendency of contributing significantly to the skin friction and the production of turbulent kinetic energy due to their mitigation by the cross-correlation between the solenoidal and dilatational velocity components.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, M. 2017 Mach number effects on rough-wall turbulent boundary layers. PhD thesis, UCLA.Google Scholar
Bernardini, M., Modesti, D., Salvadore, F. & Pirozzoli, S. 2021 STREAmS: a high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows. Comput. Phys. Commun. 263, 107906.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids 23 (8), 085102.CrossRefGoogle Scholar
Bowersox, R. 2007 Survey of high-speed rough wall boundary layers: invited presentation. In 37th AIAA Fluid Dynamics Conference and Exhibit, p. 3998.Google Scholar
Ceci, A., Palumbo, A., Larsson, J. & Pirozzoli, S. 2022 Numerical tripping of high-speed turbulent boundary layers. Theor. Comput. Fluid Dyn. 36, 865886.CrossRefGoogle Scholar
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2015 A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech. 771, 743777.CrossRefGoogle Scholar
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2018 Secondary motion in turbulent pipe flow with three-dimensional roughness. J. Fluid Mech. 854, 533.CrossRefGoogle Scholar
Chen, S., Wang, J., Li, H., Wan, M. & Chen, S. 2018 Spectra and mach number scaling in compressible homogeneous shear turbulence. Phys. Fluids 30 (6), 065109.CrossRefGoogle Scholar
Chen, S., Wang, J., Li, H., Wan, M. & Chen, S. 2019 Effect of compressibility on small scale statistics in homogeneous shear turbulence. Phys. Fluids 31 (2), 025107.CrossRefGoogle Scholar
Chung, D., Chan, L., MacDonald, M., Hutchins, N. & Ooi, A. 2015 A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418431.CrossRefGoogle Scholar
Chung, D., Hutchins, N., Schultz, M.P. & Flack, K.A. 2021 Predicting the drag of rough surfaces. Annu. Rev. Fluid Mech. 53, 439471.CrossRefGoogle Scholar
Coleman, G.N., Kim, J. & Moser, R.D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.CrossRefGoogle Scholar
Czarnecki, K.R. 1966 The problem of roughness drag at supersonic speeds. NASA Tech. Rep. TN D-3589.Google Scholar
Di Giovanni, A. & Stemmer, C. 2018 Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration. J. Fluid Mech. 856, 470503.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martin, M. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martin, M.P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.CrossRefGoogle Scholar
Duan, L., Choudhari, M.M. & Wu, M. 2014 Numerical study of acoustic radiation due to a supersonic turbulent boundary layer. J. Fluid Mech. 746, 165192.CrossRefGoogle Scholar
Duan, L., Choudhari, M.M. & Zhang, C. 2016 Pressure fluctuations induced by a hypersonic turbulent boundary layer. J. Fluid Mech. 804, 578607.CrossRefGoogle ScholarPubMed
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517549.CrossRefGoogle Scholar
Ekoto, I.W., Bowersox, R.D.W., Beutner, T. & Goss, L. 2008 Supersonic boundary layers with periodic surface roughness. AIAA J. 46 (2), 486497.CrossRefGoogle Scholar
Ekoto, I.W., Bowersox, R.D.W., Beutner, T. & Goss, L. 2009 Response of supersonic turbulent boundary layers to local and global mechanical distortions. J. Fluid Mech. 630, 225265.CrossRefGoogle Scholar
Flack, K.A. & Schultz, M.P. 2010 Review of hydraulic roughness scales in the fully rough regime. Trans. ASME J. Fluids Engng 132 (4), 041203.CrossRefGoogle Scholar
Flack, K.A. & Schultz, M.P. 2014 Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26 (10), 101305.CrossRefGoogle Scholar
Flack, K.A., Schultz, M.P. & Shapiro, T.A. 2005 Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17 (3), 035102.CrossRefGoogle Scholar
Flores, O. & Jimenez, J. 2006 Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid Mech. 566, 357376.CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.CrossRefGoogle Scholar
Gatski, T.B. & Bonnet, J.P. 2013 Compressibility, Turbulence and High Speed Flow. Academic.Google Scholar
Gomez, T., Flutet, V. & Sagaut, P. 2009 Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Phys. Rev. E 79 (3), 035301.CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. PNAS 118 (34), e2111144118.CrossRefGoogle ScholarPubMed
Hama, F.R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Archit. Mar. Engrs 62, 333358.Google Scholar
Hirasaki, G.J. & Hellums, J.D. 1970 Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics. Q. Appl. Math. 28 (2), 293296.CrossRefGoogle Scholar
Huang, J., Duan, L. & Choudhari, M.M. 2022 Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number. J. Fluid Mech. 937, A3.CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.CrossRefGoogle Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Jouybari, M.A., Yuan, J., Brereton, G.J. & Jaberi, F.A. 2020 Supersonic turbulent channel flows over two and three dimensional sinusoidal rough walls. arXiv:2012.02852Google Scholar
Kadivar, M., Tormey, D. & McGranaghan, G. 2021 A review on turbulent flow over rough surfaces: fundamentals and theories. Intl J. Thermofluids 10, 100077.CrossRefGoogle Scholar
Kempf, A.M., Wysocki, S. & Pettit, M. 2012 An efficient, parallel low-storage implementation of Klein's turbulence generator for LES and DNS. Comput. Fluids 60, 5860.CrossRefGoogle Scholar
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2), 652665.CrossRefGoogle Scholar
Kuya, Y., Totani, K. & Kawai, S. 2018 Kinetic energy and entropy preserving schemes for compressible flows by split convective forms. J. Comput. Phys. 375, 823853.CrossRefGoogle Scholar
Latin, R.M. & Bowersox, R.D.W. 2000 Flow properties of a supersonic turbulent boundary layer with wall roughness. AIAA J. 38 (10), 18041821.CrossRefGoogle Scholar
Lee, H., Williams, O. & Martin, P. 2023 Compressible boundary layer velocity transformation based on a generalized form of the total stress. arXiv:2112.13818.CrossRefGoogle Scholar
Lee, J.H., Sung, H.J. & Krogstad, P. 2011 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397431.CrossRefGoogle Scholar
Lee, S., Lele, S.K. & Moin, P. 1991 Eddy shocklets in decaying compressible turbulence. Phys. Fluids 3 (4), 657664.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P. & Antonia, R.A. 2007 Properties of d- and k-type roughness in a turbulent channel flow. Phys. Fluids 19 (12), 125101.CrossRefGoogle Scholar
Liepman, H.W. & Goddard, F.E. 1957 Note on the mach number effect upon the skin friction of rough surfaces. J. Aeronaut. Sci. 23 (10), 784.Google Scholar
Liu, Y., Yang, Q., Tu, G., Li, X., Guo, Q. & Wan, B. 2023 Hypersonic boundary-layer instability suppression by transverse microgrooves with machining flaw. AIAA J. 61 (3), 10211031.CrossRefGoogle Scholar
Ma, G.Z., Xu, C.X., Sung, H.J. & Huang, W.X. 2020 Scaling of rough-wall turbulence by the roughness height and steepness. J. Fluid Mech. 900, R7.CrossRefGoogle Scholar
MacDonald, M., Chan, L., Chung, D., Hutchins, N. & Ooi, A. 2016 Turbulent flow over transitionally rough surfaces with varying roughness densities. J. Fluid Mech. 804, 130161.CrossRefGoogle Scholar
Modesti, D. & Pirozzoli, S. 2016 Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow 59, 3349.CrossRefGoogle Scholar
Modesti, D. & Pirozzoli, S. 2019 Direct numerical simulation of supersonic pipe flow at moderate Reynolds number. Intl J. Heat Fluid Flow 76, 100112.CrossRefGoogle Scholar
Modesti, D., Sathyanarayana, S., Salvadore, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic turbulent flows over rough surfaces. J. Fluid Mech. 942, A44.CrossRefGoogle Scholar
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2004 Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273308.CrossRefGoogle Scholar
Morkovin, M. 1962 Effects of compressibility on turbulent flows. Mécanique Turbul. 367 (380), 26.Google Scholar
Musker, A.J. 1979 Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J. 17 (6), 655657.CrossRefGoogle Scholar
Nikuradse, J. 1933 Stromungsgesetze in rauhen rohren. VDI-Forschungsheft 361, 1.Google Scholar
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two-and three-dimensional roughness. J. Turbul. 7, N73.CrossRefGoogle Scholar
Orlandi, P. & Pirozzoli, S. 2021 Secondary flow in smooth and rough turbulent circular pipes: turbulence kinetic energy budgets. Fluids 6 (12), 448.CrossRefGoogle Scholar
Patel, A., Boersma, B. & Pecnik, R. 2016 The influence of near-wall density and viscosity gradients on turbulence in channel flows. J. Fluid Mech. 809, 793820.CrossRefGoogle Scholar
Peltier, S.J. 2013 Behavior of turbulent structures within a Mach 5 mechanically distorted boundary layer. PhD thesis, Texas A&M University.Google Scholar
Peltier, S.J., Humble, R.A. & Bowersox, R.D.W. 2016 Crosshatch roughness distortions on a hypersonic turbulent boundary layer. Phys. Fluids 28 (4), 045105.CrossRefGoogle Scholar
Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229 (19), 71807190.CrossRefGoogle Scholar
Pirozzoli, S. 2011 Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163194.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 On the dynamical relevance of coherent vortical structures in turbulent boundary layers. J. Fluid Mech. 648, 325349.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2016 Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788, 614639.CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. & Gatski, T.B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $M= 2.25$. Phys. Fluids 16 (3), 530545.CrossRefGoogle Scholar
Poggie, J., Bisek, N.J. & Gosse, R. 2015 Resolution effects in compressible, turbulent boundary layer simulations. Comput. Fluids 120, 5769.CrossRefGoogle Scholar
Samtaney, R., Pullin, D.I. & Kosović, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13 (5), 14151430.CrossRefGoogle Scholar
Shima, N., Kuya, Y., Tamaki, Y. & Kawai, S. 2021 Preventing spurious pressure oscillations in split convective form discretization for compressible flows. J. Comput. Phys. 427, 110060.CrossRefGoogle Scholar
Smits, A.J. & Dussauge, J.P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer.Google Scholar
Sun, D., Guo, Q., Li, C. & Liu, P. 2019 Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction. Phys. Fluids 31 (12), 126101.CrossRefGoogle Scholar
Sun, Z.S., Zhu, Y.J., Hu, Y. & Zhang, S.Y. 2018 Direct numerical simulation of a fully developed compressible wall turbulence over a wavy wall. J. Turbul. 19 (1), 72105.CrossRefGoogle Scholar
Tao, J.J. 2009 Critical instability and friction scaling of fluid flows through pipes with rough inner surfaces. Phys. Rev. Lett. 103 (26), 264502.CrossRefGoogle ScholarPubMed
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.CrossRefGoogle Scholar
Tyson, C.J. & Sandham, N.D. 2013 Numerical simulation of fully-developed compressible flows over wavy surfaces. Intl J. Heat Fluid Flow 41, 215.CrossRefGoogle Scholar
Van Driest, E. 1951 Turbulent boundary layer in compressible fluids. Intl J. Aeronaut. Space Sci. 18 (3), 145160.CrossRefGoogle Scholar
Volpiani, P.S., Iyer, P.S., Pirozzoli, S. & Larsson, J. 2020 Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids 5 (5), 052602.CrossRefGoogle Scholar
Wang, J., Gotoh, T. & Watanabe, T. 2017 Shocklet statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2 (2), 023401.CrossRefGoogle Scholar
Wang, J., Wan, M., Chen, S., Xie, C. & Chen, S. 2018 Effect of shock waves on the statistics and scaling in compressible isotropic turbulence. Phys. Rev. E 97 (4), 043108.CrossRefGoogle ScholarPubMed
Wang, J., Wan, M., Chen, S., Xie, C., Zheng, Q., Wang, L. & Chen, S. 2020 Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence. J. Fluid Mech. 883, A11.CrossRefGoogle Scholar
Wang, J.C., Shi, Y.P., Wang, L.P., Xiao, Z.L., He, X.T. & Chen, S.Y. 2012 Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.CrossRefGoogle Scholar
Wang, L. & Lu, X.Y. 2012 Flow topology in compressible turbulent boundary layer. J. Fluid Mech. 703, 255278.CrossRefGoogle Scholar
Watanabe, T., Tanaka, K. & Nagata, K. 2021 Solenoidal linear forcing for compressible, statistically steady, homogeneous isotropic turbulence with reduced turbulent Mach number oscillation. Phys. Fluids 33 (9), 095108.CrossRefGoogle Scholar
Wenzel, C., Gibis, T. & Kloker, M. 2022 About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers. J. Fluid Mech. 930, A1.CrossRefGoogle Scholar
Wenzel, C., Selent, B., Kloker, M. & Rist, U. 2018 Dns of compressible turbulent boundary layers and assessment of data/scaling-law quality. J. Fluid Mech. 842, 428468.CrossRefGoogle Scholar
Williams, O.J.H., Sahoo, D., Papageorge, M. & Smits, A.J. 2021 Effects of roughness on a turbulent boundary layer in hypersonic flow. Exp. Fluids 62 (9), 113.CrossRefGoogle Scholar
Zhu, W.K. 2022 Notes on the hypersonic boundary layer transition. Adv. Aerodyn. 4, 23.CrossRefGoogle Scholar
Yu, M., Liu, P.X., Fu, Y.L., Tang, Z.G. & Yuan, X.X. 2022 a Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. Part I. One-point statistics. Phys. Fluids 34 (6), 065139.CrossRefGoogle Scholar
Yu, M., Liu, P.X., Fu, Y.L., Tang, Z.G. & Yuan, X.X. 2022 b Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. Part II. Spectra, correlation and nonlinear interactions. Phys. Fluids 34 (6), 065140.CrossRefGoogle Scholar
Yu, M., Liu, P.X., Yuan, X.X., Tang, Z.G. & Xu, C.X. 2023 a Effects of wall disturbances on the statistics of supersonic turbulent boundary layers. Phys. Fluids 35, 025126.CrossRefGoogle Scholar
Yu, M. & Xu, C.X. 2021 Compressibility effects on hypersonic turbulent channel flow with cold walls. Phys. Fluids 33 (7), 075106.CrossRefGoogle Scholar
Yu, M., Xu, C.X. & Pirozzoli, S. 2019 Genuine compressibility effects in wall-bounded turbulence. Phys. Rev. Fluids 4 (12), 123402.CrossRefGoogle Scholar
Yu, M., Zhou, Q.Q., Su, H.M., Yuan, X.X. & Guo, Q.L. 2023 b Influences of wall disturbances on coherent structures in supersonic turbulent boundary layers. Acta Mech. Sin. (in press).CrossRefGoogle Scholar
Yuan, X.X., Fu, Y.L., Chen, J.Q., Yu, M. & Liu, P.X. 2022 Supersonic turbulent channel flows over spanwise-oriented grooves. Phys. Fluids 34 (1), 016109.CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.CrossRefGoogle Scholar
Zhang, Y., Bi, W., Hussain, F., Li, X. & She, Z. 2012 Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers. Phys. Rev. Lett. 109 (5), 054502.CrossRefGoogle ScholarPubMed
Zhang, Y.S., Bi, W.T., Hussain, F. & She, Z.S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.CrossRefGoogle Scholar