Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T09:13:19.750Z Has data issue: false hasContentIssue false

Controlling the number of vortices and torque in Taylor–Couette flow

Published online by Cambridge University Press:  02 September 2020

Jun Wen
Affiliation:
School of Marine Science and Technology, Northwestern Polytechnical University, 710072 Xi'an, PR China Department of Mechanical Engineering, Imperial College London, London, UK
Wen-Yun Zhang
Affiliation:
School of Marine Science and Technology, Northwestern Polytechnical University, 710072 Xi'an, PR China
Liu-Zhen Ren
Affiliation:
School of Marine Science and Technology, Northwestern Polytechnical University, 710072 Xi'an, PR China
Lu-Yao Bao
Affiliation:
School of Marine Science and Technology, Northwestern Polytechnical University, 710072 Xi'an, PR China
Daniele Dini
Affiliation:
Department of Mechanical Engineering, Imperial College London, London, UK
Heng-Dong Xi*
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, 710072 Xi'an, PR China
Hai-Bao Hu*
Affiliation:
School of Marine Science and Technology, Northwestern Polytechnical University, 710072 Xi'an, PR China
*
Email addresses for correspondence: hengdongxi@nwpu.edu.cn, huhaibao@nwpu.edu.cn
Email addresses for correspondence: hengdongxi@nwpu.edu.cn, huhaibao@nwpu.edu.cn

Abstract

We present an experimental study on controlling the number of vortices and the torque in a Taylor–Couette flow of water for Reynolds numbers from 660 to 1320. Different flow states are achieved in the annulus of width $d$ between the inner rotating and outer stationary cylinders through manipulating the initial height of the water annulus. We show that the torque exerted on the inner cylinder of the Taylor–Couette system can be reduced by up to 20 % by controlling the flow at a state where fewer than the nominal number of vortices develop between the cylinders. This flow state is achieved by starting the system with an initial water annulus height $h_0$ (which nominally corresponds to $h_0/d$ vortices), then gradually adding water into the annulus while the inner cylinder keeps rotating. During this filling process the flow topology is so persistent that the number of vortices does not increase; instead, the vortices are greatly stretched in the axial (vertical) direction. We show that this state with stretched vortices is sustainable until the vortices are stretched to around 2.05 times their nominal size. Our experiments reveal that by manipulating the initial height of the liquid annulus we are able to generate different flow states and demonstrate how the different flow states manifest themselves in global momentum transport.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.CrossRefGoogle Scholar
Ayan, M. S., Entezari, M. & Chini, S. F. 2019 Experiments on skin friction reduction induced by superhydrophobicity and Leidenfrost phenomena in a Taylor–Couette cell. Intl J. Heat Mass Transfer 132, 271279.CrossRefGoogle Scholar
Benjamin, T. B. 1978 a Bifurcation phenomena in steady flows of a viscous fluid. I. Theory. Proc. R. Soc. Lond. A 359 (1696), 126.Google Scholar
Benjamin, T. B. 1978 b Bifurcation phenomena in steady flows of a viscous fluid II. Experiments. Proc. R. Soc. Lond. A 359 (1696), 2743.Google Scholar
Benjamin, T. B. & Mullin, T. 1981 Anomalous modes in the Taylor experiment. Proc. R. Soc. Lond. A 377 (1770), 221249.Google Scholar
Benjamin, T. B. & Mullin, T. 1982 Notes on the multiplicity of flows in the Taylor experiment. J. Fluid Mech. 121, 219230.CrossRefGoogle Scholar
Brauckmann, H. J. & Eckhardt, B. 2013 Direct numerical simulations of local and global torque in Taylor–Couette flow up to $Re=30\,000$. J. Fluid Mech. 718, 398427.CrossRefGoogle Scholar
Burkhalter, J. E. & Koschmieder, E. L. 1973 Steady supercritical Taylor vortex flow. J. Fluid Mech. 58 (3), 547560.CrossRefGoogle Scholar
Burkhalter, J. E. & Koschmieder, E. L. 1974 Steady supercritical Taylor vortices after sudden starts. Phys. Fluids 17 (11), 19291935.CrossRefGoogle Scholar
Chouippe, A., Climent, E., Legendre, D. & Gabillet, C. 2014 Numerical simulation of bubble dispersion in turbulent Taylor–Couette flow. Phys. Fluids 26 (4), 043304.CrossRefGoogle Scholar
Chung, K. C. & Astill, K. N. 1977 Hydrodynamic instability of viscous flow between rotating coaxial cylinders with fully developed axial flow. J. Fluid Mech. 81 (4), 641655.CrossRefGoogle Scholar
Cliffe, K. A. & Mullin, T. 1985 A numerical and experimental study of anomalous modes in the Taylor experiment. J. Fluid Mech. 153, 243258.CrossRefGoogle Scholar
Di Prima, R. C. & Swinney, H. L. 1981 Instabilities and transition in flow between concentric rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. Swinney, H. L. & Gollub, J. P.), pp. 139180. Springer.Google Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.CrossRefGoogle Scholar
Greidanus, A. J., Delfos, R. & Westerweel, J. 2011 Drag reduction by surface treatment in turbulent Taylor–Couette flow. J. Phys.: Conf. Ser. 318 (8), 082016.Google Scholar
Groisman, A. & Steinberg, V. 1996 Couette–Taylor flow in a dilute polymer solution. Phys. Rev. Lett. 77 (8), 14801483.CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Sun, C. 2016 High Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.CrossRefGoogle Scholar
Guersoni, V. C. B., Bannwart, A. C., Destefani, T. & Sabadini, E. 2015 Comparative study of drag reducers for light hydrocarbon flow. Petrol. Sci. Technol. 33 (8), 943951.CrossRefGoogle Scholar
Hu, H., Wen, J., Bao, L., Jia, L., Song, D., Song, B., Pan, G., Scaraggi, M., Dini, D., Xue, Q., et al. 2017 Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips. Sci. Adv. 3 (9), e1603288.CrossRefGoogle ScholarPubMed
Huisman, S. G., Van Der Veen, R. C. A., Sun, C. & Lohse, D. 2014 Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun. 5, 3820.CrossRefGoogle ScholarPubMed
Lueptow, R. M., Docter, A. & Min, K. 1992 Stability of axial flow in an annulus with a rotating inner cylinder. Phys. Fluids A 4 (11), 24462455.CrossRefGoogle Scholar
Mansour, M., Ali, M. H. & El-Maksoud, R. M. A. 2016 Experimental study of expansion and compression effects on the stability of Taylor vortex flow. Fluid Dyn. Res. 48 (4), 045502.CrossRefGoogle Scholar
Maretzke, S., Hof, B. & Avila, M. 2014 Transient growth in linearly stable Taylor–Couette flows. J. Fluid Mech. 742, 254290.CrossRefGoogle Scholar
Martínez-Arias, B., Peixinho, J., Crumeyrolle, O. & Mutabazi, I. 2014 Effect of the number of vortices on the torque scaling in Taylor–Couette flow. J. Fluid Mech. 748, 756767.CrossRefGoogle Scholar
Min, K. & Lueptow, R. M. 1994 Circular Couette flow with pressure-driven axial flow and a porous inner cylinder. Exp. Fluids 17 (3), 190197.CrossRefGoogle Scholar
Murai, Y., Oiwa, H. & Takeda, Y. 2008 Frictional drag reduction in bubbly Couette–Taylor flow. Phys. Fluids 20 (3), 034101.CrossRefGoogle Scholar
Naim, M. S. & Baig, M. F. 2019 Turbulent drag reduction in Taylor–Couette flows using different super-hydrophobic surface configurations. Phys. Fluids 31 (9), 095108.CrossRefGoogle Scholar
Nakken, T., Tande, M. & Elgsaeter, A. 2001 Measurements of polymer induced drag reduction and polymer scission in Taylor flow using standard double-gap sample holders with axial symmetry. J. Non-Newtonian Fluid Mech. 97 (1), 112.CrossRefGoogle Scholar
Ostilla, R., Stevens, R. J. A. M., Grossmann, S., Verzicco, R. & Lohse, D. 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.CrossRefGoogle Scholar
Ostilla-Mónico, R., Lohse, D. & Verzicco, R. 2016 Effect of roll number on the statistics of turbulent Taylor–Couette flow. Phys. Rev. Fluids 1 (5), 054402.CrossRefGoogle Scholar
Pfister, G., Schmidt, H., Cliffe, K. A. & Mullin, T. 1988 Bifurcation phenomena in Taylor–Couette flow in a very short annulus. J. Fluid Mech. 191, 118.CrossRefGoogle Scholar
Riecke, H. & Paap, H. G. 1986 Stability and wave-vector restriction of axisymmetric Taylor vortex flow. Phys. Rev. A 33 (1), 547553.CrossRefGoogle ScholarPubMed
Rosenberg, B. J., Van Buren, T., Fu, M. K. & Smits, A. J. 2016 Turbulent drag reduction over air- and liquid-impregnated surfaces. Phys. Fluids 28 (1), 015103.CrossRefGoogle Scholar
Saranadhi, D., Chen, D., Kleingartner, J. A., Srinivasan, S., Cohen, R. E. & McKinley, G. H. 2016 Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Sci. Adv. 2 (10), e1600686.CrossRefGoogle Scholar
Srinivasan, S., Kleingartner, J. A., Gilbert, J. B., Cohen, R. E., Milne, A. J. B. & McKinley, G. H. 2015 Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett. 114 (1), 014501.CrossRefGoogle ScholarPubMed
Sugiyama, K., Calzavarini, E. & Lohse, D. 2008 Microbubbly drag reduction in Taylor–Couette flow in the wavy vortex regime. J. Fluid Mech. 608, 2141.CrossRefGoogle Scholar
Takeuchi, D. I. & Jankowski, D. F. 1981 A numerical and experimental investigation of the stability of spiral Poiseuille flow. J. Fluid Mech. 102, 101126.CrossRefGoogle Scholar
Tilton, N. & Martinand, D. 2018 Taylor–Couette–Poiseuille flow with a weakly permeable inner cylinder: absolute instabilities and selection of global modes. J. Fluid Mech. 849, 741776.CrossRefGoogle Scholar
Van den Berg, T. H., Luther, S., Lathrop, D. P. & Lohse, D. 2005 Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett. 94 (4), 044501.CrossRefGoogle ScholarPubMed
Van Buren, T. & Smits, A. J. & 2017 Substantial drag reduction in turbulent flow using liquid-infused surfaces. J. Fluid Mech. 827, 448456.CrossRefGoogle Scholar
Verschoof, R. A., Bakhuis, D., Bullee, P. A., Huisman, S. G., Sun, C. & Lohse, D. 2018 The influence of wall roughness on bubble drag reduction in Taylor–Couette turbulence. J. Fluid Mech. 851, 436446.CrossRefGoogle Scholar
Xiao, Q., Lim, T. T. & Chew, Y. T. 2002 Effect of acceleration on the wavy Taylor vortex flow. Exp. Fluids 32 (6), 639644.CrossRefGoogle Scholar