Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T02:21:46.189Z Has data issue: false hasContentIssue false

Convection of a binary fluid saturating a shallow porous cavity subjected to cross heat fluxes

Published online by Cambridge University Press:  15 February 2007

A. BAHLOUL
Affiliation:
Institut de Recherche Robert-Sauvé en Santé et Sécurité du Travail, 505, boul. de Maisonneuve Ouest, Montral, PQ H3A 3C2, Canada
P. VASSEUR
Affiliation:
Department of Mechanical Engineering, Ecole Polytechnique, University of Montréal, C.P. 6079, Succ. ‘Down-Town’ Montréal, Québec, H3C 3A7, Canada
L. ROBILLARD
Affiliation:
Department of Mechanical Engineering, Ecole Polytechnique, University of Montréal, C.P. 6079, Succ. ‘Down-Town’ Montréal, Québec, H3C 3A7, Canada

Abstract

In this work, natural convection in a differentially heated binary mixture is studied analytically and numerically. The fluid is subjected to the Soret effect and is contained in a shallow rectangular porous cavity. All four faces are exposed to uniform heat fluxes, opposite faces being heated and cooled, respectively. Analytical solutions for the stream function, temperature and concentration fields are obtained using a parallel flow assumption in the core region of the cavity and an integral form of the energy and constituent equations. Numerical confirmation of the analytical predictions is also obtained. Results are presented first in the presence of a vertical temperature gradient (a = 0) for which the solution takes the form of a standard Bénard bifurcation. For this situation, steady bifurcations are either pitchfork or subcritical, depending on the separation parameter ϕ and Lewis number Le. The imperfection brought by a horizontal temperature gradient (a≠0) to the bifurcation is then investigated. Both the nonlinear analytical model and the numerical solution indicate that, depending on a, ϕ and Le, the onset of motion occurs through subcritical bifurcations. The existence of transcritical bifurcations is also demonstrated. The special case where the buoyancy forces induced by the thermal and solutal forces are opposing and of equal intensity (ϕ =-1) is also discussed. For this particular situation, the supercritical Rayleigh number for the onset of convection is predicted on the basis of a linear stability analysis. Multiple steady states near the threshold of convection are found.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bahloul, A., Boutana, N. & Vasseur, P. 2003 Double-diffusive and Soret-induced convection in a shallow porous layer. J. Fluid Mech. 491, 325352.CrossRefGoogle Scholar
Batiste, O., Alonso, A. & Mercader, I. 2004 Hydrodynamic stability of binary mixtures in Bénard and thermogravitational cells. J. Non-Equilib. Thermodyn. 29, 359375.CrossRefGoogle Scholar
Bejan, A. & Tien, C. L. 1978 Natural convection in a horizontal porous medium subjected to an end-to-end temperature difference. J. Heat Mass Transfe. 100, 191198.Google Scholar
Bergeon, A., Henry, D., Ben Hadid, N. & Tuckerman, L.S. 1998 Marangoni convection in binary mixtures with Soret effect. J. Fluid Mech. 375, 143177.CrossRefGoogle Scholar
Bourich, M., Hasnaoui, M., Amahmid, A. & Mamou, M. 2002 Soret driven thermosolutal convection in a shallow porous enclosure. Intl Commun. Heat Mass Transfe. 29, 717728.CrossRefGoogle Scholar
Bourich, M., Hasnaoui, M., Mamou, M. & Amahmid, A. 2004 Soret effect inducing subcritical and Hopf bifurcation in a shallow enclosure filled with a clear binary or a saturated porous medium: a comparative study. Phys. Fluid. 16, 551569.CrossRefGoogle Scholar
Bourich, M., Hasnaoui, M., Amahmid, A. & Mamou, M. 2005 Onset of convection and finite amplitude flow due to Soret effect within a horizontal sparsely packed porous enclosure heated from below. Intl J. Heat Fluid Flo. 26, 513525.CrossRefGoogle Scholar
Brand, H. R. & Steinberg, V. 1983 a Convective instabilities in binary mixtures in a porous medium. Physica. 119A, 327338.CrossRefGoogle Scholar
Brand, H. R. & Steinberg, V. 1983 b Nonlinear effects in the convective instability of a binary mixture in a porous medium near threshold. Phys. Lett. 93 A, 333336.Google Scholar
Chen, F. & Chen, C. F. 1993 Double diffusive fingering convection in a porous medium. Intl J. Heat Mass Transfe. 36, 793807.CrossRefGoogle Scholar
De Groot, S. R. & Mazur, P. 1962 Non Equilibrium Thermodynamics. North-Holland.Google Scholar
Kalla, L., Vasseur, P., Bennacer, R., Beji, H. & Duval, R. 2001 Double diffusive convection within a horizontal porous layer salted from the bottom and heated horizontally. Intl Commun. Heat Mass Transfe. 28, 110.CrossRefGoogle Scholar
Kimura, S., Vynnycky, M. & Alavyoon, F. 1995 Unicellular natural circulation in a shallow horizontal porous layer heated from below by a constant flux. J. Fluid Mech. 294, 231257.CrossRefGoogle Scholar
Mahidjiba, A., Mamou, M. & Vasseur, P. 2000 Onset of double-diffusive convection in a rectangular porous cavity subject to mixed boundary conditions. Intl J. Heat Mass Transfe. 43, 15051522.CrossRefGoogle Scholar
Mamou, M. 1997 Convection thermosolutale dans des milieux poreux et fluides confinés. PhD thesis, Ecole Polytechnique of Montreal, Canada.Google Scholar
Mamou, M. & Vasseur, P. 1999 Thermosolutal bifurcation phenomena in porous enclosures subjected to vertical temperature and concentration gradients. J. Fluid Mech. 395, 6187.CrossRefGoogle Scholar
Mamou, M., Vasseur, P. & Bilgen, E. 1998 Double diffusive convection instability problem in a vertical porous enclosure. J. Fluid Mech. 368, 263289.CrossRefGoogle Scholar
Marcoux, M., Charrier-Mojtabi, M. C. & Bergeron, A. 1998 Naissance de la thermogravitation dans un mélange binaire imprégnant un milieu poreux. Entropi. 214, 3136.Google Scholar
Nield, D. A. 1967 The thermohaline Rayleigh–Jeffreys problem. J. Fluid Mech. 29, 545558.CrossRefGoogle Scholar
Ouarzazi, M. N. & Bois, P. A. 1994 Convective instability of a fluid mixture in a porous medium with time-dependent temperature. Eur. J. Mech. B/Fluids. 13, 275298.Google Scholar
Patil, P. R. & Rudraiah, N. 1980 Linear convective stability and thermal diffusion of a horizontal quiescent layer of a two component fluid in a porous medium. Intl J. Engng Sci. 18, 10551059.CrossRefGoogle Scholar
Piquer, E., Charrier-Mojtabi, M. C., Azaiez, M. & Mojtabi, A. 2005 Convection mixte en fluide binaire avec effet Soret: étude analytique de la transition vers les releaux transversaux 2D. C. R. Méc. 333, 179186.CrossRefGoogle Scholar
Platten, J. K. & Legros, J. C. 1984 Convection in Liquids. Springer.CrossRefGoogle Scholar
Poulikakos, D. 1986 Double diffusive convection in a horizontal sparcelly packed porous layer. Intl Commun. Heat Mass Transfe. 13, 587598.CrossRefGoogle Scholar
Rosenberg, N. D. & Spera, F. G. 1992 Thermohaline convection in a porous medium heated from below. Intl J. Heat Mass Transfe. 35, 12611273.CrossRefGoogle Scholar
Rudraiah, N., Shrimani, P. K. & Friedrich, R. 1982 Finite amplitude convection in a two-component fluid saturated porous layer. Intl J. Heat Mass Transfe. 25, 715722.CrossRefGoogle Scholar
Rudraiah, N., Shrimani, P. K. & Friedrich, R. 1986 Finite amplitude convection in a two-component fluid porous layer. Intl Commun. Heat Mass Transfe. 3, 587598.Google Scholar
Sen, M., Vasseur, P. & Robillard, L. 1987 Multiple steady state for unicellular natural convection in an inclined porous layer. Intl J. Heat Mass Transfe. 3, 587598.Google Scholar
Sovran, O., Charrier-Mojtabi, M. C. & Mojtabi, A. 2001 Naissance de la convection thermo-solutale en couche poreuse infinie avec effet Soret. C. R. Acad. Sci. Pari. 329 (11b), 287–293.Google Scholar
Taslim, M. E. & Narusaw, U. 1986 Binary fluid convection and double-diffusive convection in porous medium. J. Heat Transfe. 108, 221224.CrossRefGoogle Scholar
Taunton, J. W., Lightfoot, E. N. & Green, T. 1972 Thermohaline instability and salt fingers in a porous medium. Phys. Fluid. 15, 748753.CrossRefGoogle Scholar
Traore, P. & Mojtabi, A. 1994 Analyse de l'effet Soret en convection thermosolutale. Entropie 184/185, 3237.Google Scholar
Trevisan, O. V. & Bejan, A. 1987 Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below. Intl J. Heat Transfe. 30, 23412356.CrossRefGoogle Scholar