Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T05:54:31.711Z Has data issue: false hasContentIssue false

The cost of swimming in generalized Newtonian fluids: experiments with C. elegans

Published online by Cambridge University Press:  14 July 2016

D. A. Gagnon
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
P. E. Arratia*
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
*
Email address for correspondence: parratia@seas.upenn.edu

Abstract

Numerous natural processes are contingent on microorganisms’ ability to swim through fluids with non-Newtonian rheology. Here, we use the model organism Caenorhabditis elegans and tracking methods to experimentally investigate the dynamics of undulatory swimming in shear-thinning fluids. Theory and simulation have proposed that the cost of swimming, or mechanical power, should be lower in a shear-thinning fluid compared to a Newtonian fluid of the same zero-shear viscosity. We aim to provide an experimental investigation into the cost of swimming in a shear-thinning fluid from (i) an estimate of the mechanical power of the swimmer and (ii) the viscous dissipation rate of the flow field, which should yield equivalent results for a self-propelled low Reynolds number swimmer. We find the cost of swimming in shear-thinning fluids is less than or equal to the cost of swimming in Newtonian fluids of the same zero-shear viscosity; furthermore, the cost of swimming in shear-thinning fluids scales with a fluid’s effective viscosity and can be predicted using fluid rheology and simple swimming kinematics. Our results agree reasonably well with previous theoretical predictions and provide a framework for understanding the cost of swimming in generalized Newtonian fluids.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. 1991 Introduction to Soil Microbiology. R.E. Krieger.Google Scholar
Brenner, S. 1974 The genetics of Caenorhabditis elegans . Genetics 77, 7194.Google Scholar
Byerly, L., Cassada, R. C. & Russell, R. L. 1976 The life cycle of the nematode Caenorhabditis elegans. I: wild-type growth and reproduction. Dev. Biol. 51, 2333.Google Scholar
Carreau, P. J., DeKee, D. C. R. & Chhabra, R. P. 1997 Rheology of Polymeric Systems. Hanser.Google Scholar
Celli, J. P., Turner, B. S., Afdhal, N. H., Keates, S., Ghiran, I., Kelly, C. P., Ewoldt, R. H., McKinley, G. H., So, P., Erramilli, S. et al. 2009 Heliobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl Acad. Sci. USA 106, 1432114326.Google Scholar
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.Google Scholar
Crocker, J. C. & Grier, D. G. 1996 Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298310.Google Scholar
Fauci, L. J. & Dillon, R. 2006 Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371394.Google Scholar
Fu, H. C., Shenoy, V. B. & Powers, T. R. 2010 Low-Reynolds-number swimming in gels. Eur. Phys. Lett. 91, 24002.Google Scholar
Fu, H. C., Wolgemuth, C. W. & Powers, T. R. 2009 Swimming speeds of filaments in nonlinearly viscoelastic fluids. Phys. Fluids 21, 033102.Google Scholar
Gagnon, D. A., Keim, N. C. & Arratia, P. E. 2014 Undulatory swimming in shear-thinning fluids: experiments with Caenorhabditis elegans . J. Fluid Mech. 758, R3.Google Scholar
Gagnon, D. A., Shen, X. N. & Arratia, P. E. 2013 Undulatory swimming in fluids with polymer networks. Europhys. Lett. 104, 14004.Google Scholar
Guasto, J. S., Johnson, K. A. & Gollub, J. P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105, 168102.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Springer.CrossRefGoogle Scholar
Harman, M. W., Dunham-Ems, S. M., Caimano, M. J., Belperron, A. A., Bockenstedt, L. K., Fu, H. C., Radolf, J. D. & Wolgemuth, C. W. 2012 The heterogenous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc. Natl Acad. Sci. USA 109, 30593064.Google Scholar
Jorgensen, E. M. & Mango, S. E. 2002 The art and design of genetic screens: Caenorhabditis elegans . Nat. Rev. Genet. 3, 622630.Google Scholar
Juarez, G., Lu, K., Sznitman, J. & Arratia, P. E. 2010 Motility of small nematodes in wet granular media. Europhys. Lett. 92 (4), 44002.CrossRefGoogle Scholar
Katz, D. F. & Berger, S. A. 1980 Flagellar propulsion of human sperm in cervical mucus. Biorheology 17, 169175.Google Scholar
Krajacic, P., Shen, X. N., Purohit, P. K., Arratia, P. E. & Lamitina, T. 2012 Biomechanical profiling of Caenorhabditis elegans motility. Genetics 191, 10151021.Google Scholar
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.Google Scholar
Lauga, E. 2007 Propulsion in a viscoelastic fluid. Phys. Fluids 19, 083104.Google Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.Google Scholar
Leshansky, A. M. 2009 Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments. Phys. Rev. E 80, 051911.Google Scholar
Li, G. & Ardekani, A. M. 2015 Undulatory swimming in non-Newtonian fluids. J. Fluid Mech. 784, R4.Google Scholar
Lighthill, J. 1976 Flagellar hydrodynamics. SIAM Rev. 18, 161230.CrossRefGoogle Scholar
Liu, B., Powers, T. R. & Breuer, K. S. 2011 Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc. Natl Acad. Sci. USA 108, 1951619520.Google Scholar
Montenegro-Johnson, T. D., Smith, A. A., Smith, D. J., Loghin, D. & Blake, J. R. 2012 Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur. Phys. J. E 35, 111.Google Scholar
Montenegro-Johnson, T. D., Smith, D. J. & Loghin, D. 2013 Physics of rheologically enhanced propulsion: different strokes in generalized Stokes. Phys. Fluids 25, 081903.Google Scholar
Patteson, A. E., Gopinath, A., Goulian, M. & Arratia, P. E. 2015 Running and tumbling with E. coli in polymeric solutions. Sci. Rep. 5, 15761.Google Scholar
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.Google Scholar
Qin, B., Gopinath, A., Yang, J., Gollub, J. P. & Arratia, P. E. 2015 Flagellar kinematics and swimming of algal cells in viscoelastic fluids. Sci. Rep. 5, 9190.CrossRefGoogle ScholarPubMed
Rankin, C. H. 2002 From gene to identified neuron behavior in Caenorhabditis elegans . Nat. Rev. Genet. 3, 622630.Google Scholar
Shen, X. N. & Arratia, P. E. 2011 Undulatory swimming in viscoelastic fluids. Phys. Rev. Lett. 106, 208101.Google Scholar
Silverman, G. A., Luke, C. J., Bhatia, S. R., Long, O. S., Vetica, A. C., Perlmutter, D. H. & Pak, S. C. 2009 Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans . Pediatr. Res. 65, 1018.Google Scholar
Spagnolie, S. E.(Ed.) 2015 Complex Fluids in Biological Systems. Springer.Google Scholar
Sznitman, J., Purohit, P. K., Krajacic, P., Lamitina, T. & Arratia, P. E. 2010a Material properties of Caenorhabditis elegans swimming at low Reynolds number. Biophys. J. 98, 617626.Google Scholar
Sznitman, J., Shen, X. N., Sznitman, R. & Arratia, P. E. 2010b Propulsive force measurements and flow behavior of undulatory swimmers at low Reynolds number. Phys. Fluids 22, 121901.Google Scholar
Taylor, G. I. 1951 Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209 (1099), 447461.Google Scholar
Teran, J., Fauci, L. & Shelley, M. 2010 Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104, 038101.Google Scholar
Thomases, B. & Guy, R. D. 2014 Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113, 098102.Google Scholar
Vélez-Cordero, J. N. & Lauga, E. 2013 Waving transport and propulsion in a generalized Newtonian fluid. J. Non-Newtonian Fluid. 199, 3750.Google Scholar
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. 1986 The structure of the nervous system of the nematode Caenorhabditis elegans . Phil. Trans. R. Soc. Lond. B 314, 1340.Google ScholarPubMed