Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T20:27:12.609Z Has data issue: false hasContentIssue false

Delaying the onset of dynamic wetting failure through meniscus confinement

Published online by Cambridge University Press:  30 July 2012

Eric Vandre
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
Marcio S. Carvalho*
Affiliation:
Department of Mechanical Engineering, Pontificia Universidade Catòlica do Rio de Janeiro, Rio de Janeiro, RJ, 22451-041, Brazil
Satish Kumar*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
*
Email addresses for correspondence: msc@puc-rio.br, kumar030@umn.edu
Email addresses for correspondence: msc@puc-rio.br, kumar030@umn.edu

Abstract

Dynamic wetting is crucial to processes where liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Numerous studies report the failure of dynamic wetting past some critical process speed. However, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from an empirical and theoretical perspective. The objective of this investigation is to determine the effect of meniscus confinement on the onset of dynamic wetting failure. A novel experimental system is designed to simultaneously view confined and unconfined wetting systems as they approach wetting failure. The experimental apparatus consists of a scraped steel roll that rotates into a bath of glycerol. Confinement is imposed via a gap formed between a coating die and the roll surface. Flow visualization is used to record the critical roll speed at which wetting failure occurs. Comparison of the confined and unconfined data shows a clear increase in the relative critical speed as the meniscus becomes more confined. A hydrodynamic model for wetting failure is developed and analysed with (i) lubrication theory and (ii) a two-dimensional finite-element method (FEM). Both approaches do a remarkable job of matching the observed confinement trend, but only the two-dimensional model yields accurate estimates of the absolute values of the critical speeds due to the highly two-dimensional nature of the stress field in the displacing liquid. The overall success of the hydrodynamic model suggests a wetting failure mechanism primarily related to viscous bending of the meniscus.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. 2004 Image processing with imagej. Biophoton. Intl 11, 3642.Google Scholar
2. Benkreira, H. & Ikin, J. B. 2010 Dissolution and growth of entrained bubbles when dip coating in a gas under reduced pressure. Chem. Engng Sci. 65, 58215829.CrossRefGoogle Scholar
3. Benkreira, H. & Khan, M. I. 2008 Air entrainment in dip coating under reduced air pressures. Chem. Engng Sci. 63, 448459.CrossRefGoogle Scholar
4. Blake, T. D. 1993 Dynamic contact angles and wetting kinetics. In Wettability (ed. Berg, J. C. ). pp. 249309. Marcel Dekker.Google Scholar
5. Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299, 113.CrossRefGoogle ScholarPubMed
6. Blake, T. D., Bracke, M. & Shikhmurzaev, Y. D. 1999 Experimental evidence of non-local hydrodynamic influence on the dynamic contact angle. Phys. Fluids 11, 19952007.CrossRefGoogle Scholar
7. Blake, T. D., Dobson, R., Batts, G. N. & Harrison, W. J. 1995 Coating processes. US Patent no. 5391401.Google Scholar
8. Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282, 489491.CrossRefGoogle Scholar
9. Blake, T. D. & Ruschak, K. J. 1997 Wetting: static and dynamic contact lines. In Liquid Flim Coating (ed. Kistler, S. F. & Schweizer, P. M. ). pp. 6397. Chapman & Hall.CrossRefGoogle Scholar
10. Bolstad, J. H. & Keller, H. B. 1986 A multigrid continuation method for elliptic problems with folds. SIAM J. Sci. Comput. 7, 10811104.CrossRefGoogle Scholar
11. Bolton, B. & Middleman, S. 1980 Air entrainment in a roll coating system. Chem. Engng Sci. 35, 597601.CrossRefGoogle Scholar
12. Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.CrossRefGoogle Scholar
13. Burley, R. & Jolly, R. P. S. 1984 Entrainment of air into liquids by a high speed continuous solid surface. Chem. Engng Sci. 39, 13571372.CrossRefGoogle Scholar
14. Carlson, A., Do-Quang, M. & Amberg, G. 2011 Dissipation in rapid dynamic wetting. J. Fluid Mech. 682, 213240.CrossRefGoogle Scholar
15. Carvalho, M. S. & Kheshgi, H. S. 2000 Low-flow limit in slot coating: theory and experiments. AIChE J. 46, 19071917.CrossRefGoogle Scholar
16. Christodoulou, K. N., Kistler, S. F. & Schunk, P. R. 1997 Advances in computational methods for free-surface flows. In Liquid Film Coating (ed. Kistler, S. F. & Schweizer), P. M. ). pp. 297367. Chapman & Hall.CrossRefGoogle Scholar
17. Christodoulou, K. N. & Scriven, L. E. 1992 Discretization of free surface flows and other moving boundary problems. J. Comput. Phys. 99, 3955.CrossRefGoogle Scholar
18. Clarke, A., Bower, C. L. & Goppert, K. E. 2003 Apparatus and method of coating a web. US Patent no. 6638576 B2.Google Scholar
19. Clarke, A. & Stattersfield, E. 2006 Direct evidence supporting non-local hydrodynamic influence on the dynamic contact angle. Phys. Fluids 18, 048106.CrossRefGoogle Scholar
20. Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
21. Delon, G., Fermigier, M., Snoeijer, J. H. & Andreotti, B. 2008 Relaxation of a dewetting contact line. Part 2. Experiments. J. Fluid Mech. 604, 5575.CrossRefGoogle Scholar
22. Dussan V, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.CrossRefGoogle Scholar
23. Dussan V, E. B. & Davis, S. H. 1974 On the motion of a fluid–fluid interface along a solid surface. J. Fluid Mech. 65, 7195.CrossRefGoogle Scholar
24. Eggers, J. 2001 Air entrainment through free-surface cusps. Phys. Rev. Lett. 86, 42904293.CrossRefGoogle ScholarPubMed
25. Eggers, J. 2004 Toward a description of contact line motion at higher capillary numbers. Phys. Fluids 16, 34913494.CrossRefGoogle Scholar
26. Eggers, J. 2005 Existence of receding and advancing contact lines. Phys. Fluids 17, 082106.CrossRefGoogle Scholar
27. Eggers, J. & Courrech du Pont, S. 2009 Numerical analysis of tips in viscous flow. Phys. Rev. E 79, 066311.CrossRefGoogle ScholarPubMed
28. Ernst, R. C., Watkins, C. H. & Ruwe, H. H. 1936 The physical properties of the ternary system ethyl alcohol–glycerin–water. J. Phys. Chem. 40, 627635.CrossRefGoogle Scholar
29. de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
30. Gutoff, E. B. & Kendrick, C. E. 1982 Dynamic contact angles. AIChE J. 28, 459466.CrossRefGoogle Scholar
31. Gutoff, E. B. & Kendrick, C. E. 1987 Low flow limits of coatability on a slide coater. AIChE J. 33, 141145.CrossRefGoogle Scholar
32. Hens, J. & Abbenyen, W. V. 1997 Slide coating. In Liquid Film Coating (ed. Kistler, S. F. & Schweizer, P. M. ), pp. 427462. Chapman & Hall.CrossRefGoogle Scholar
33. Hoffman, R. L. 1975 A study of the advancing interface. i. Interface shape in liquid–gas systems. J. Colloid Interface Sci. 50, 228241.CrossRefGoogle Scholar
34. Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
35. Jacqmin, D. 2004 Onset of wetting failure in liquid–liquid systems. J. Fluid Mech. 517, 209228.CrossRefGoogle Scholar
36. Jennings, S. G. 1988 The mean free path in air. J. Aerosol Sci. 19, 159166.CrossRefGoogle Scholar
37. Kistler, S. F. 1993 Hydrodynamics of wetting. In Wettability (ed. Berg, C. ), pp. 311429. Marcel Dekker.Google Scholar
38. Krechetnikov, R. 2010 On application of lubrication approximations to non-unidirectional coating flows with clean and surfactant interfaces. Phys. Fluids 22, 092102.CrossRefGoogle Scholar
39. Kuck, V. J. & Simpkins, P. G. 2000 Bubble prevention in coating of filaments. US Patent no. 6131416.Google Scholar
40. Lauga, E., Brenner, M. P. & Stone, H. A. 2005 Microfluidics: the no-slip boundary condition. In Handbook of Experimental Fluid Dynamics (ed. Tropea, C., Foss, J. F. & Yarin, A. ). Springer.Google Scholar
41. Legait, B. & Sourieau, P. 1985 Effect of geometry on advancing contact angles in fine capillaries. J. Colloid Interface Sci. 107, 1420.CrossRefGoogle Scholar
42. Lowndes, J. 1980 The numerical simulation of the steady movement of a fluid meniscus in a capillary tube. J. Fluid Mech. 101, 631646.CrossRefGoogle Scholar
43. Min, Q., Duan, Y.-Y., Wang, X.-D., Liang, Z.-P. & Si, C. 2011 Does macroscopic flow geometry influence wetting dynamic? J. Colloid Interface Sci. 362, 221227.CrossRefGoogle ScholarPubMed
44. Miyamoto, K. & Katagiri, Y. 1997 Curtain coating. In Liquid Film Coating (ed. Kistler, S. F. & Schweizer, P. M. ), pp. 461494. Chapman & Hall.Google Scholar
45. Mues, W., Hens, J. & Boiy, L. 1989 Observation of a dynamic wetting process using laser-doppler velocimetry. AIChE J. 35, 15211526.CrossRefGoogle Scholar
46. Nam, J. & Carvalho, M. S. 2009 Mid-gap invasion in two-layer slot coating. J. Fluid Mech. 631, 397417.CrossRefGoogle Scholar
47. Neto, C., Evans, D. R., Bonaccurso, E., Butt, H.-J. & Craig, V. S. J. 2005 Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 28592897.CrossRefGoogle Scholar
48. Ngan, C. G. & Dussan V, E. B. 1982 On the nature of the dynamic contact angle: an experimental study. J. Fluid Mech. 118, 2740.CrossRefGoogle Scholar
49. Perry, R. T. 1967 Fluid mechanics of entrainment through liquid–liquid and liquid–solid junction. PhD thesis, University of Minnesota.Google Scholar
50. Peters, I., Snoeijer, J. H., Daerr, A. & Limat, L. 2009 Coexistence of two singularities in dewetting flows: regularizing the corner tip. Phys. Rev. Lett. 103, 114501.CrossRefGoogle ScholarPubMed
51. Quiel, R. R., Gros, A. E., Finnicum, D. S. & Joos, F. M. 2003 Slide bead coating method. US Patent no. 6511711 B2.Google Scholar
52. Ralston, J., Popescu, M. & Sedev, R. 2008 Dynamics of wetting from an experimental point of view. Annu. Rev. Mater. Res. 38, 2343.CrossRefGoogle Scholar
53. Ravinutala, S. & Polymeropoulos, C. 2002 Entrance meniscus in a pressurized optical fibre coating applicator. Exp. Therm. Fluid Sci. 26, 573580.CrossRefGoogle Scholar
54. Savelski, M. J., Shetty, S. A., Kolb, W. B. & Cerro, R. L. 1995 Flow patterns associated with the steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 176, 117127.CrossRefGoogle Scholar
55. Sbragaglia, M., Sugiyama, K. & Biferale, L. 2008 Wetting failure and contact line dynamics in a Couette flow. J. Fluid Mech. 614, 471493.CrossRefGoogle Scholar
56. Severtson, Y. C. & Aidun, C. K. 1996 Stability of two-layer stratified flow in inclined channels: applications to air entrainment in coating systems. J. Fluid Mech. 312, 173200.CrossRefGoogle Scholar
57. Shikhmurzaev, Y. D. 1993 The moving contact line on a solid surface. Intl J. Multiphase Flow 19, 589610.CrossRefGoogle Scholar
58. Shikhmurzaev, Y. D. 2008 Capillary Flows with Forming Interfaces. Chapman & Hall/CRC.Google Scholar
59. Silliman, W. J. & Scriven, L. E. 1980 Separating flow near a static contact line: slip at a wall and shape of a free surface. J. Comput. Phys. 34, 287313.CrossRefGoogle Scholar
60. Simpkins, P. G. & Kuck, V. J. 2000 Air entrapment in coatings by way of tip-streaming meniscus. Nature 403, 641643.CrossRefGoogle ScholarPubMed
61. Simpkins, P. G. & Kuck, V. J. 2003 On air entrainment in coatings. J. Colloid Interface Sci. 263, 562571.CrossRefGoogle ScholarPubMed
62. Snoeijer, J. H. & Andreotti, B. 2008 A microscopic view on contact angle selection. Phys. Fluids 20, 057101.CrossRefGoogle Scholar
63. Snoeijer, J. H., Andreotti, B., Delon, G. & Fermigier, M. 2007a Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation. J. Fluid Mech. 579, 6383.CrossRefGoogle Scholar
64. Snoeijer, J. H., Delon, G., Fermigier, M. & Andreotti, B. 2006 Avoided critical behaviour in dynamically forced wetting. Phys. Rev. Lett. 96, 174504.CrossRefGoogle ScholarPubMed
65. Snoeijer, J. H., Le Grand-Piteira, N., Limat, L., Stone, H. A. & Eggers, J. 2007b Cornered drops and rivulets. Phys. Fluids 19, 042104.CrossRefGoogle Scholar
66. Snoeijer, J. H., Rio, E., Le Grand, N. & Limat, L. 2005 Self-similar flow and contact line geometry at the rear of cornered drops. Phys. Fluids 17, 072101.CrossRefGoogle Scholar
67. Sprittles, J. E. & Shikhmurzaev, Y. D. 2012 Finite element framework for describing dynamic wetting phenomena. Intl J. Numer. Meth. Fluids 68, 12571298.CrossRefGoogle Scholar
68. Tilton, J. N. 1988 The steady motion of an interface between two viscous liquids in a capillary tube. Chem. Engng Sci. 43, 13711384.CrossRefGoogle Scholar
69. Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.CrossRefGoogle Scholar
70. Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.CrossRefGoogle Scholar
71. Wilkinson, W. L. 1975 Entrainment of air by a solid surface entering a liquid/air interface. Chem. Engng Sci. 30, 12271230.CrossRefGoogle Scholar
72. Wilson, M. C. T., Summers, J. L., Shikhmurzaev, Y. D., Clarke, A. & Blake, T. D. 2006 Non-local hydrodynamic influence on the dynamic contact angle: slip models versus experiment. Phys. Rev. E 73, 041606.CrossRefGoogle Scholar
73. Yamamura, M. 2007 Assisted dynamic wetting in liquid coatings. Colloids Surf. A: Physicochemical and Engineering Aspects 311, 5560, Engineering Particle Technology.CrossRefGoogle Scholar
74. Yue, P. & Feng, J. J. 2011 Can diffuse-interface models quantitatively describe moving contact lines? Eur. Phys. J. – Special Topics 197, 3746.CrossRefGoogle Scholar
Supplementary material: PDF

Vandre et al. supplementary material

Supplementary figs and tables

Download Vandre et al. supplementary material(PDF)
PDF 734.4 KB