Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T19:46:28.675Z Has data issue: false hasContentIssue false

Differential formulation of the viscous history force on a particle for efficient and accurate computation

Published online by Cambridge University Press:  16 April 2018

M. Parmar
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
S. Annamalai
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
S. Balachandar*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
A. Prosperetti
Affiliation:
Department of Mechanical Engineering, University of Houston, TX 77204-4006, USA Physics of Fluids Group, Department of Science and Technology, J.M. Burgers Centre for Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands
*
Email address for correspondence: bala1s@ufl.edu

Abstract

It is well known that the computation of the Basset-like history force is very demanding in terms of CPU and memory requirements, since it requires the evaluation of a history integral. We use the recent rational theory of Beylkin & Monzón (Appl. Comput. Harmon. Anal., vol. 19, 2005, pp. 17–48) to approximate the history kernel in the form of exponential sums to reformulate the viscous history force in a differential form. This theory allows us to approximate the history kernel in terms of exponential sums to any desired order of accuracy. This removes the need for long-time storage of the acceleration histories of the particle and the fluid. The proposed differential form approximation is applied to compute the history force on a spherical particle in a synthetic turbulent flow and a wall-bounded turbulent channel flow. Particles of various diameters are considered, and results obtained using the present technique are in reasonable agreement with those achieved using the full history integral.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachandar, S. 2009 A scaling analysis for point-particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35, 801810.10.1016/j.ijmultiphaseflow.2009.02.013Google Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.10.1146/annurev.fluid.010908.165243Google Scholar
Basset, A. B. 1888 Treatise on Hydrodynamics. Deighton, Bell and Company.Google Scholar
Beylkin, G. & Monzón, L. 2005 On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 1748.10.1016/j.acha.2005.01.003Google Scholar
Bombardelli, F. A., Gonzalez, A. E. & Nino, Y. I. 2008 Computation of the particle Basset force with a fractional-derivative approach. J. Hydraul. Eng.-ASCE 134 (10), 15131520.10.1061/(ASCE)0733-9429(2008)134:10(1513)Google Scholar
Boussinesq, J. 1885 Sur la résistance qu’oppose un liquide indéfini au repos au mouvement varié d’une sphère solide. C. R. Acad. Sci. Paris 100, 935937.Google Scholar
Brush, L. M., Ho, H. W. & Yen, B. C. 1964 Accelerated motion of a sphere in a viscous fluid. J. Hydraul. Engng 90, 149160.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.Google Scholar
Daitche, Anton 2013 Advection of inertial particles in the presence of the history force: higher order numerical schemes. J. Comput. Phys. 254, 93106.10.1016/j.jcp.2013.07.024Google Scholar
Dorgan, A. J. & Loth, E. 2007 Efficient calculation of the history force at finite Reynolds numbers. Intl J. Multiphase Flow 33 (8), 833848.10.1016/j.ijmultiphaseflow.2007.02.005Google Scholar
Elghannay, H. A. & Tafti, D. K. 2016 Development and validation of a reduced order history force model. Intl J. Multiphase Flow 85, 284297.10.1016/j.ijmultiphaseflow.2016.06.019Google Scholar
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27 (7), 11991226.10.1016/S0301-9322(00)00069-0Google Scholar
Ferry, J. & Balachandar, S. 2002 Equilibrium expansion for the Eulerian velocity of small particles. Powder Technol. 125 (2–3), 131139.10.1016/S0032-5910(01)00499-5Google Scholar
Ferry, J., Rani, S. L. & Balachandar, S. 2003 A locally implicit improvement of the equilibrium Eulerian method. Intl J. Multiphase Flow 29 (6), 869891.10.1016/S0301-9322(03)00064-8Google Scholar
van Hinsberg, M. A. T., Ten Thije Boonkkamp, J. H. M. & Clercx, H. J. H. 2011 An efficient, second order method for the approximation of the Basset history force. J. Comput. Phys. 230 (4), 14651478.10.1016/j.jcp.2010.11.014Google Scholar
Landau, L. D. & Lifschitz, E. M. 1987 Fluid Mechanics, Course of Theroretical Physics, vol. 6. Butterworth-Heinemann.Google Scholar
Lee, H., Ha, M. Y. & Balachandar, S. 2012 Work-based criterion for particle motion and implication for turbulent bed-load transport. Phys. Fluids 24 (11), 116604.10.1063/1.4767541Google Scholar
Lee, H. & Hsu, I. 1994 Investigation of saltating particle motion. J. Hydraul. Engng 120 (7), 831845.10.1061/(ASCE)0733-9429(1994)120:7(831)Google Scholar
Ling, Y., Parmar, M. & Balachandar, S. 2013 A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Intl J. Multiphase Flow 57, 102114.10.1016/j.ijmultiphaseflow.2013.07.005Google Scholar
Longhorn, A. L. 1952 The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. Q. J. Mech. Appl. Maths 5, 6481.10.1093/qjmam/5.1.64Google Scholar
Lovalenti, P. M. & Brady, J. F. 1993a The force on a sphere in a uniform-flow with small-amplitude oscillations at finite Reynolds-number. J. Fluid Mech. 256, 607614.10.1017/S0022112093002897Google Scholar
Lovalenti, P. M. & Brady, J. F. 1993b The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds-number. J. Fluid Mech. 256, 561605.10.1017/S0022112093002885Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.10.1063/1.864230Google Scholar
Mei, R. 1993 History force on a sphere due to a step change in the free-stream velocity. Intl J. Multiphase Flow 19 (3), 509525.10.1016/0301-9322(93)90064-2Google Scholar
Mei, R. W. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.10.1017/S0022112092003434Google Scholar
Michaelides, E. E. 1992 A Novel way of computing the Basset term in unsteady multiphase flow computations. Phys. Fluids A 4 (7), 15791582.10.1063/1.858430Google Scholar
Mordant, N. & Pinton, J. F. 2000 Velocity measurement of a settling sphere. Eur. Phys. J. B 18 (2), 343352.10.1007/PL00011074Google Scholar
Nino, I. & Garcia, M. 1998 Using Lagrangian particle saltation observations for bedload sediment transport modelling. Hydrol. Process. 12, 11971218.10.1002/(SICI)1099-1085(19980630)12:8<1197::AID-HYP612>3.0.CO;2-U3.0.CO;2-U>Google Scholar
Parmar, M., Balachandar, S. & Haselbacher, A. 2012a Equation of motion for a drop or bubble in viscous compressible flows. Phys. Fluids 24, 056103.10.1063/1.4719696Google Scholar
Parmar, M., Balachandar, S. & Haselbacher, A. 2012b Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352375.10.1017/jfm.2012.109Google Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2008 On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Phil. Trans. R. Soc. Lond. A 366 (1873), 21612175.10.1098/rsta.2008.0027Google Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2011 Generalized Basset–Boussinesq–Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106 (8), 084501.10.1103/PhysRevLett.106.084501Google Scholar
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.Google Scholar
Schmeeckle, M. W. & Nelson, J. M. 2003 Direct numerical simulation of bedload transport using a local, dynamic boundary condition. Sedimentology 50, 279301.10.1046/j.1365-3091.2003.00555.xGoogle Scholar
Sobral, Y. D., Oliveira, T. F. & Cunha, F. R. 2007 On the unsteady forces during the motion of a sedimenting particle. Powder Technol. 178 (2), 129141.10.1016/j.powtec.2007.04.012Google Scholar
Taylor, G. I. 1928 The forces on a body placed in a curved or converging stream of fluid. Proc. R. Soc. Lond. A 120 (785), 260283.Google Scholar
Tchen, C. M.1947 Mean value and correction problems connected with the motion of small particles suspended in a turbulent fluid. PhD thesis, Delft University, Hague.Google Scholar
Vojir, D. J. & Mchaelides, E. E. 1994 Effect of the history term on the motion of rigid spheres in a viscous-fluid. Intl J. Multiphase Flow 20 (3), 547556.10.1016/0301-9322(94)90028-0Google Scholar
Wood, I. R. & Jenkins, B. S. 1973 A numerical study of the suspension of a non-buoyant particle in a turbulent stream. In Proceedings of the IAHR International Symposium on River Mechanics, vol. 1, pp. 431442. Asian Institute of Technology.Google Scholar