Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T21:25:38.422Z Has data issue: false hasContentIssue false

Diffusiophoresis, Batchelor scale and effective Péclet numbers

Published online by Cambridge University Press:  08 August 2019

Florence Raynal*
Affiliation:
LMFA, Univ Lyon, École Centrale Lyon, INSA Lyon, Université Lyon 1, CNRS, F-69134 Écully, France
Romain Volk*
Affiliation:
Laboratoire de Physique, ENS de Lyon, Univ Lyon, CNRS, 69364 Lyon CEDEX 07, France
*
Email addresses for correspondence: florence.raynal@ec-lyon.fr, romain.volk@ens-lyon.fr
Email addresses for correspondence: florence.raynal@ec-lyon.fr, romain.volk@ens-lyon.fr

Abstract

We study the joint mixing of colloids and salt released together in a stagnation point or in a globally chaotic flow. In the presence of salt inhomogeneities, the mixing time is strongly modified depending on the sign of the diffusiophoretic coefficient $D_{dp}$. Mixing is delayed when $D_{dp}>0$ (salt-attracting configuration), or faster when $D_{dp}<0$ (salt-repelling configuration). In both configurations, as for molecular diffusion alone, large scales are barely affected in the dilating direction while the Batchelor scale for the colloids, $\ell _{c,diff}$, is strongly modified by diffusiophoresis. We propose here to measure a global effect of diffusiophoresis in the mixing process through an effective Péclet number built on this modified Batchelor scale. Whilst this small scale is obtained analytically for the stagnation point, in the case of chaotic advection, we derive it using the equation of gradients of concentration, following Raynal & Gence (Intl J. Heat Mass Transfer, vol. 40 (14), 1997, pp. 3267–3273). Comparing to numerical simulations, we show that the mixing time can be predicted by using the same function as in absence of salt, but as a function of the effective Péclet numbers computed for each configuration. The approach is shown to be valid when the ratio $D_{dp}^{2}/D_{s}D_{c}\gg 1$, where $D_{c}$ and $D_{s}$ are the diffusivities of the colloids and salt.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abécassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A. & Bocquet, L. 2009 Osmotic manipulation of particles for microfluidic applications. New J. Phys. 11 (7), 075022.Google Scholar
Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 6199.Google Scholar
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.Google Scholar
Bakunin, O. G.(Ed.) 2011 Chaotic Flows. Springer.Google Scholar
Banerjee, A., Williams, I., Azevedo, R. N., Helgeson, M. E. & Squires, T. M. 2016 Soluto-inertial phenomena: designing long-range, long-lasting, surface-specific interactions in suspensions. Proc. Natl Acad. Sci. USA 113 (31), 86128617.Google Scholar
Biferale, L., Crisanti, A., Vergassola, M. & Vulpiani, A. 1995 Eddy diffusivities in scalar transport. Phys. Fluids 7 (11), 27252734.Google Scholar
Birch, D. A., Young, W. R. & Franks, P. J. S. 2008 Thin layers of plankton: formation by shear and death by diffusion. Deep-Sea Res. I 55 (3), 277295.Google Scholar
Deseigne, J., Cottin-Bizonne, C., Stroock, A. D., Bocquet, L. & Ybert, C. 2014 How a “pinch of salt” can tune chaotic mixing of colloidal suspensions. Soft Matt. 10, 47954799.Google Scholar
Frish, U. 1995 Turbulence-The Legacy of A. N. Kolmogorov. Cambridge University Press.Google Scholar
Mauger, C., Volk, R., Machicoane, N., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Raynal, F. 2016 Diffusiophoresis at the macroscale. Phys. Rev. Fluids 1, 034001.Google Scholar
Metcalfe, G., Speetjens, M. F. M., Lester, D. R. & Clercx, H. J. H. 2012 Beyond passive: chaotic transport in stirred fluids. In Advances in Applied Mechanics, vol. 45, pp. 109188. Elsevier.Google Scholar
Pierrehumbert, R. T. 1994 Tracer microstructure in the large-eddy dominated regime. Chaos, Solitons Fractals 4 (6), 10911110.Google Scholar
Pierrehumbert, R. T. 2000 Lattice models of advection-diffusion. Chaos 10 (1), 6174.Google Scholar
Ranz, W. E. 1979 Applications of a stretch model to mixing, diffusion, and reaction in laminar and turbulent flows. AIChE J. 25 (41), 075022.Google Scholar
Raynal, F., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Volk, R. 2018 Advection and diffusion in a chemically induced compressible flow. J. Fluid Mech. 847, 228243.Google Scholar
Raynal, F. & Gence, J.-N. 1997 Energy saving in chaotic laminar mixing. Intl J. Heat Mass Transfer 40 (14), 32673273.Google Scholar
Schmidt, L., Fouxon, I., Krug, D., van Reeuwijk, M. & Holzner, M. 2016 Clustering of particles in turbulence due to phoresis. Phys. Rev. E 93, 063110.Google Scholar
Shukla, V., Volk, R., Bourgoin, M. & Pumir, A. 2017 Phoresis in turbulent flows. New J. Phys. 19 (12), 123030.Google Scholar
Sundararajan, P. & Stroock, A. D. 2012 Transport phenomena in chaotic laminar flows. Annu. Rev. Fluid Mech. 3, 473493.Google Scholar
Villermaux, E. 2019 Mixing versus stirring. Annu. Rev. Fluid Mech. 51, 245273.Google Scholar
Volk, R., Mauger, C., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Raynal, F. 2014 Chaotic mixing in effective compressible flows. Phys. Rev. E 90, 013027.Google Scholar