Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T12:06:57.897Z Has data issue: false hasContentIssue false

Dynamics of reorientations and reversals of large-scale flow in Rayleigh–Bénard convection

Published online by Cambridge University Press:  16 December 2010

P. K. MISHRA*
Affiliation:
Department of Physics, Indian Institute of Technology, Kanpur 208016, India
A. K. DE
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Guwahati 781039, India
M. K. VERMA
Affiliation:
Department of Physics, Indian Institute of Technology, Kanpur 208016, India
V. ESWARAN
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India
*
Email address for correspondence: kumarpk@iitk.ac.in

Abstract

We present a numerical study of the reversals and reorientations of the large-scale circulation (LSC) of convective fluid in a cylindrical container of aspect ratio one. We take Prandtl number to be 0.7 and Rayleigh numbers in the range from 6 × 105 to 3 × 107. It is observed that the reversals of the LSC are induced by its reorientation along the azimuthal direction, which are quantified using the phases of the first Fourier mode of the vertical velocity measured near the lateral surface in the midplane. During a ‘complete reversal’, the above phase changes by around 180°, leading to reversals of the vertical velocity at all the probes. On the contrary, the vertical velocity reverses only at some of the probes during a ‘partial reversal’ with phase change other than 180°. Numerically, we observe rotation-led and cessation-led reorientations, in agreement with earlier experimental results. The ratio of the amplitude of the second Fourier mode and the first Fourier mode rises sharply during the cessation-led reorientations. This observation is consistent with the quadrupolar dominant temperature profile observed during the cessations. We also observe reorientations involving double cessation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Araujo, F. F., Grossmann, S. & Lohse, D. 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084502.CrossRefGoogle ScholarPubMed
Benzi, R. 2005 Flow reversal in a simple dynamical model of turbulence. Phys. Rev. Lett. 95, 024502.CrossRefGoogle Scholar
Benzi, R. & Verzicco, R. 2008 Numerical simulations of flow reversal in Rayleigh–Bénard convection. Europhys. Lett. 81, 64008.CrossRefGoogle Scholar
Breuer, M. & Hansen, U. 2009 Turbulent convection in the zero Reynolds number limit. Europhys. Lett. 86, 24004.Google Scholar
Brown, E. & Ahlers, G. 2006 Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.Google Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.CrossRefGoogle ScholarPubMed
Brown, E. & Ahlers, G. 2008 A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 075101.Google Scholar
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech. 10, P10005.Google Scholar
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard Convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
Grötzbach, G. 1983 Spatial resolution requirement for direct numerical simulation of Rayleigh–Bénard convection. J. Comput. Phys. 49, 241264.CrossRefGoogle Scholar
Hansen, U., Yuen, D. A. & Kroening, S. E. 1990 Transition to hard turbulence in thermal convection at infinite Prandtl number. Phys. Fluids A 2 (12), 21572163.Google Scholar
Hansen, U., Yuen, D. A. & Kroening, S. E. 1992 Mass and heat transport in strongly time-dependent thermal convection at infinite Prandtl number. Geophys. Astrophyphys. Fluid Dyn. 63, 67.CrossRefGoogle Scholar
Kadanoff, L. P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54, 3439.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L. N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 78, 19811985.CrossRefGoogle ScholarPubMed
Niemela, J. J. et al. 2000 Turbulent convection at very high Rayleigh numbers. Nature (London) 404, 837840.Google Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2001 The wind in confined thermal convection. J. Fluid Mech. 449, 169178.Google Scholar
Paul, S., Kumar, K., Verma, M. K., Carati, D., De, A. & Eswaran, V. 2010 Chaotic travelling rolls in Rayleigh–Bénard convection. Pramana 74, 7582.Google Scholar
Qiu, X. L. & Tong, P. 2001 Onset of coherent oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 87, 094501.Google Scholar
Sano, M., Wu, X. Z. & Libchaber, A. 1989 Turbulence in helium gas free convection. Phys. Rev. A 40, 64216430.CrossRefGoogle ScholarPubMed
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh number convection. Phys. Rev. A 42, 36503653.CrossRefGoogle ScholarPubMed
Sreenivasan, K. R., Bershadskii, A. & Niemela, J. J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65, 056306.Google ScholarPubMed
Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.Google Scholar
Stringano, G. & Verzicco, R. 2006 Mean flow structure in thermal convection in a cylindrical cell of aspect ratio one half. J. Fluid Mech. 548, 116.CrossRefGoogle Scholar
Tam, C. K. W. & Webb, J. C. 1993 Dispersion-relation-preserving finite difference schemes for computational acoustic. J. Comput. Phys. 107, 262281.Google Scholar
Tsuji, Y., Mizuno, T., Mashiko, T. & Sano, M. 2005 Mean wind in convective turbulence of mercury. Phys. Rev. Lett. 94, 034501.Google Scholar
Verzicco, R. & Camussi, R. 1999 Prandtl number effects in convective turbulence. J. Fluid Mech. 383, 5573.CrossRefGoogle Scholar
Villermaux, E. 1995 Memory-induced low frequency oscillations in closed convection boxes. Phys. Rev. Lett. 75, 4618.CrossRefGoogle ScholarPubMed
Wicht, J. & Olson, P. 2004 A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geochem. Geophys. Geosyst. 5, Q03H10.CrossRefGoogle Scholar
Xi, H. D., Lam, S. & Xia, K. Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.Google Scholar
Xi, H. D. & Xia, K. Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75, 066307.Google Scholar
Xi, H. D. & Xia, K. Q. 2008 a Flow mode transitions in turbulent thermal convection. Phys. Fluids 20, 055104.Google Scholar
Xi, H. D. & Xia, K. Q. 2008 b Azimuthal motion, reorientation, cessation, and reversal of the large-scale circulation in turbulent thermal convection: a comparative study in aspect ratio one and one-half geometries. Phys. Rev. E 78, 036326.Google Scholar
Xi, H. D., Zhou, Q. & Xia, K. Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73, 056312.Google Scholar

Mishra supplementary material

Movie 1. Movie shows the temperature profile of the vertical section ($\theta=3\pi/4$) for $R = 2\times10^7$. A hot plume (red) ascends from the right wall and a cold plume (blue) descends from the left wall confirming the presence of large scale structure.

Download Mishra supplementary material(Video)
Video 6.8 MB

Mishra supplementary material

Movie 2. Movie shows the temperature profile in the horizontal cut ($z=0.5$) for $R = 2\times10^7$. Hot and cold plumes ziggle along the periphery of horizontal section that confirms the movement of large scale flow in the azimuthal direction.

Download Mishra supplementary material(Video)
Video 7.7 MB