Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T19:52:29.513Z Has data issue: false hasContentIssue false

Effect of equivalence ratio fluctuations on planar detonation discontinuities

Published online by Cambridge University Press:  28 September 2020

Alberto Cuadra
Affiliation:
Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, 28911Leganés, Spain
César Huete*
Affiliation:
Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, 28911Leganés, Spain
Marcos Vera
Affiliation:
Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, 28911Leganés, Spain
*
Email address for correspondence: chuete@ing.uc3m.es

Abstract

We propose a linear asymptotic theory to describe the propagation of planar detonation fronts through heterogeneous mixtures of reactive gases consisting of random fluctuations in the fuel mass fraction. The analysis starts with the derivation of the transfer functions that relate the upstream fuel mass fraction inhomogeneities with the burnt-gas perturbations via normal mode analysis. These results are then used in a Fourier analysis of a detonation wave interacting with two- and three-dimensional isotropic heterogeneous fields. This yields integral formulae for the turbulent kinetic energy, sonic energy and averaged vorticity and entropy production rates. Second-order corrections for the turbulent Rankine–Hugoniot conditions are also obtained, along with analytical expressions for the deviation of the detonation velocity with respect to that of the equivalent homogeneous mixture. Upstream inhomogeneities are found to speed up the detonation front in the vast majority of scenarios studied, with a velocity amplification factor that depends on the properties of the fuel–air mixture, particularly on the variation of the density and the heat release with the fuel mass fraction.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreopoulos, Y., Agui, J. H. & Briassulis, G. 2000 Shock wave–turbulence interactions. Annu. Rev. Fluid Mech. 32 (1), 309345.CrossRefGoogle Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Blackstock, D. T. 1962 Propagation of plane sound waves of finite amplitude in nondissipative fluids. J. Acoust. Soc. Am. 34 (1), 930.CrossRefGoogle Scholar
Browne, S., Ziegler, J. & Shepherd, J. E. 2008 Shock and detonation toolbox. GALCIT-Explosion Dynamics Laboratory, Pasadena, CA.Google Scholar
Chu, B.-T. & Kovásznay, L. S. G. 1958 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3 (5), 494514.CrossRefGoogle Scholar
Clavin, P. & Williams, F. A. 2012 Analytical studies of the dynamics of gaseous detonations. Phil. Trans. R. Soc. Lond. A 370 (1960), 597624.Google ScholarPubMed
Ettner, F., Vollmer, K. G. & Sattelmayer, T. 2013 Mach reflection in detonations propagating through a gas with a concentration gradient. Shock Waves 23 (3), 201206.CrossRefGoogle Scholar
Farag, G., Boivin, P. & Sagaut, P. 2019 Interaction of two-dimensional spots with a heat releasing/absorbing shock wave: linear interaction approximation results. J. Fluid Mech. 871, 865895.CrossRefGoogle Scholar
Frolov, S. M., Aksenov, V. S., Ivanov, V. S., Shamshin, I. O. & Zangiev, A. E. 2019 Air-breathing pulsed detonation thrust module: numerical simulations and firing tests. Aerosp. Sci. Technol. 89, 275287.CrossRefGoogle Scholar
Goodwin, D. G., Speth, R. L., Moffat, H. K. & Weber, B. W. 2018 Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Available at: https://www.cantera.org, version 2.4.0.Google Scholar
Gordon, S. & McBride, B. J. 1994 Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1. Analysis. NASA Tech. Rep. 1311.Google Scholar
Griffond, J 2005 Linear interaction analysis applied to a mixture of two perfect gases. Phys. Fluids 17 (8), 086101.CrossRefGoogle Scholar
Han, W., Wang, C. & Law, C. K. 2019 Pulsation in one-dimensional H2–O2 detonation with detailed reaction mechanism. Combust. Flame 200, 242261.CrossRefGoogle Scholar
Hazak, G., Velikovich, A. L., Gardner, J. H. & Dahlburg, J. P. 1998 Shock propagation in a low-density foam filled with fluid. Phys. Plasmas 5 (12), 43574365.CrossRefGoogle Scholar
Holzer, M. & Siggia, E. D. 1994 Turbulent mixing of a passive scalar. Phys. Fluids 6 (5), 18201837.CrossRefGoogle Scholar
Huete, C., Jin, T., Martínez-Ruiz, D. & Luo, K. 2017 Interaction of a planar reacting shock wave with an isotropic turbulent vorticity field. Phys. Rev. E 96 (5), 053104.CrossRefGoogle ScholarPubMed
Huete, C., Sánchez, A. L. & Williams, F. A. 2013 Theory of interactions of thin strong detonations with turbulent gases. Phys. Fluids 25 (7), 076105.CrossRefGoogle Scholar
Huete, C., Sánchez, A. L. & Williams, F. A. 2014 Linear theory for the interaction of small-scale turbulence with overdriven detonations. Phys. Fluids 26 (11), 116101.CrossRefGoogle Scholar
Huete, C. & Vera, M. 2019 D'yakov–Kontorovich instability in planar reactive shocks. J. Fluid Mech. 879, 5484.CrossRefGoogle Scholar
Huff, R., Schauer, F., Boller, S. A., Polanka, M. D., Fotia, M. & Hoke, J. 2019 Exit condition measurements of a radial rotating detonation engine bleed air turbine. In AIAA Scitech 2019 Forum, p. 1011. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Hussein, S. M. 2018 Direct numerical simulation of homogeneous isotropic turbulence-a methodology and applications. PhD thesis, The University of Texas at Arlington.Google Scholar
Jackson, T. L., Hussaini, M. Y. & Ribner, H. S. 1993 Interaction of turbulence with a detonation wave. Phys. Fluids A 5 (3), 745749.CrossRefGoogle Scholar
Jackson, T. L., Kapila, A. K. & Hussaini, M. Y. 1990 Convection of a pattern of vorticity through a reacting shock wave. Phys. Fluids A 2 (7), 12601268.CrossRefGoogle Scholar
Jin, T., Luo, K., Dai, Q. & Fan, J. 2016 Simulations of cellular detonation interaction with turbulent flows. AIAA J. 54 (2), 419433.CrossRefGoogle Scholar
Kabanov, D. I. & Kasimov, A. R. 2018 Linear stability analysis of detonations via numerical computation and dynamic mode decomposition. Phys. Fluids 30 (3), 036103.CrossRefGoogle Scholar
Kailasanath, K. 2000 Review of propulsion applications of detonation waves. AIAA J. 38 (9), 16981708.CrossRefGoogle Scholar
Kailasanath, K. 2003 Recent developments in the research on pulse detonation engines. AIAA J. 41 (2), 145159.CrossRefGoogle Scholar
Kailasanath, K. 2006 Liquid-fueled detonations in tubes. J. Propul. Power 22 (6), 12611268.CrossRefGoogle Scholar
Kasimov, A. R. & Stewart, D. S. 2004 On the dynamics of self-sustained one-dimensional detonations: a numerical study in the shock-attached frame. Phys. Fluids 16 (10), 35663578.CrossRefGoogle Scholar
Kessler, D. A., Gamezo, V. N. & Oran, E. S. 2012 Gas-phase detonation propagation in mixture composition gradients. Phil. Trans. R. Soc. Lond. A 370 (1960), 567596.Google ScholarPubMed
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20 (10), 657674.CrossRefGoogle Scholar
Larsson, J. & Lele, S. K. 2009 Direct numerical simulation of canonical shock/turbulence interaction. Phys. fluids 21 (12), 126101.CrossRefGoogle Scholar
Lee, S., Lele, S. K. & Moin, P. 1993 Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533562.CrossRefGoogle Scholar
Lele, S. K. 1992 Shock-jump relations in a turbulent flow. Phys. Fluids A 4 (12), 29002905.CrossRefGoogle Scholar
Li, J., Mi, X. & Higgins, A. J. 2015 Effect of spatial heterogeneity on near-limit propagation of a pressure-dependent detonation. Proc. Combust. Inst. 35 (2), 20252032.CrossRefGoogle Scholar
Livescu, D. 2020 Turbulence with large thermal and compositional density variations. Annu. Rev. Fluid Mech. 52, 309341.CrossRefGoogle Scholar
Massa, L., Chauhan, M. & Lu, F. K. 2011 Detonation–turbulence interaction. Combust. Flame 158 (9), 17881806.CrossRefGoogle Scholar
Massa, L. & Lu, F. K. 2011 The role of the induction zone on the detonation–turbulence linear interaction. Combust. Theor. Model. 15 (3), 347371.CrossRefGoogle Scholar
Meadows, J. W. & Subramanian, S. 2019 Novel approach for modeling non-premixed rotating detonation engine using a 2-D CFD analysis. In AIAA Propulsion and Energy 2019 Forum, p. 4130. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Meng, Q., Zhao, N., Zheng, H., Yang, J. & Qi, L. 2018 Numerical investigation of the effect of inlet mass flow rates on h2/air non-premixed rotating detonation wave. Intl J. Hydrogen Energy 43 (29), 1361813631.CrossRefGoogle Scholar
Mi, X., Higgins, A. J., Ng, H. D., Kiyanda, C. B & Nikiforakis, N. 2017 a Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium. Phys. Rev. Fluids 2 (5), 053201.CrossRefGoogle Scholar
Mi, X., Timofeev, E. V. & Higgins, A. J. 2017 b Effect of spatial discretization of energy on detonation wave propagation. J. Fluid Mech. 817, 306338.CrossRefGoogle Scholar
Miller, R. S. 2000 Long time mass fraction statistics in stationary compressible isotropic turbulence at supercritical pressure. Phys. Fluids 12 (8), 20202032.CrossRefGoogle Scholar
Ostrovskii, L. A. 1968 Second-order terms in a traveling sound wave. Sov. Phys. Acoust. 14, 6166.Google Scholar
Prakash, S., Fiévet, R. & Raman, V. 2019 a The effect of fuel stratification on the detonation wave structure. In AIAA Scitech 2019 Forum, p. 1511. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Prakash, S., Fiévet, R., Raman, V., Burr, J. & Yu, K. H. 2019 b Analysis of the detonation wave structure in a linearized rotating detonation engine. AIAA J. doi:10.2514/1.J058156.CrossRefGoogle Scholar
Prakash, S. & Raman, S. 2019 Detonation propagation through inhomogeneous fuel–air mixtures. In International Colloquium on the Dynamics of Explosions and Reactive Systems, Paper 361, Institute for Dynamics of Explosions and Reactive Systems.Google Scholar
Pratt, D. T., Humphrey, J. W. & Glenn, D. E. 1991 Morphology of standing oblique detonation waves. J. Propul. Power 7 (5), 837845.CrossRefGoogle Scholar
Quadros, R., Sinha, K. & Larsson, J. 2016 Turbulent energy flux generated by shock/homogeneous-turbulence interaction. J. Fluid Mech. 796, 113157.CrossRefGoogle Scholar
Radulescu, M. I., Sharpe, G. J., Law, C. K. & Lee, J. H. S. 2007 The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 3181.CrossRefGoogle Scholar
Ribner, H. S. 1954 a Convection of a pattern of vorticity through a shock wave. NACA TN-3255. Also NACA Rep. 1233.Google Scholar
Ribner, H. S. 1954 b Shock-turbulence interaction and the generation of noise. NACA Tech. Rep. 1233.Google Scholar
Ribner, H. S. 1987 Spectra of noise and amplified turbulence emanating from shock-turbulence interaction. AIAA J. 25 (3), 436442.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics, vol. 10. Springer.CrossRefGoogle Scholar
Sethuraman, Y. & Sinha, K. 2020 Modeling of thermodynamic fluctuations in canonical shock–turbulence interaction. AIAA J. 58 (7), 30763089.CrossRefGoogle Scholar
Sethuraman, Y. P. M., Sinha, K. & Larsson, J. 2018 Thermodynamic fluctuations in canonical shock–turbulence interaction: effect of shock strength. Theor. Comput. Fluid Dyn. 32 (5), 629654.CrossRefGoogle Scholar
Shepherd, J. E. 2009 Detonation in gases. Proc. Combust. Inst. 32 (1), 8398.CrossRefGoogle Scholar
Short, M. & Quirk, J. J. 1997 On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction. J. Fluid Mech. 339, 89119.CrossRefGoogle Scholar
Sinha, K. 2012 Evolution of enstrophy in shock/homogeneous turbulence interaction. J. Fluid Mech. 707, 74110.CrossRefGoogle Scholar
Tian, Y., Jaberi, F. A. & Livescu, D. 2020 Modeling of shock propagation in non-uniform density media. In AIAA Scitech 2020 Forum, p. 0101, American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50, 593627.CrossRefGoogle Scholar
Velikovich, A. L., Huete, C. & Wouchuk, J. G. 2012 Effect of shock-generated turbulence on the hugoniot jump conditions. Phys. Rev. E 85 (1), 016301.CrossRefGoogle ScholarPubMed
Veyssiere, B. & Khasainov, B. A. 1995 Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures. Shock Waves 4 (4), 171186.CrossRefGoogle Scholar
Watanabe, H., Matsuo, A., Chinnayya, A., Matsuoka, K., Kawasaki, A. & Kasahara, J. 2020 Numerical analysis of the mean structure of gaseous detonation with dilute water spray. J. Fluid Mech. 887, A4.CrossRefGoogle Scholar
Watanabe, H., Matsuo, A., Matsuoka, K., Kawasaki, A. & Kasahara, J. 2019 Numerical investigation on propagation behavior of gaseous detonation in water spray. Proc. Combust. Inst. 37 (3), 36173626.CrossRefGoogle Scholar
Westervelt, P. J. 1950 The mean pressure and velocity in a plane acoustic wave in a gas. J. Acoust. Soc. Am. 22 (3), 319327.CrossRefGoogle Scholar
Williams, F. A. 1961 Structure of detonations in dilute sprays. Phys. Fluids 4 (11), 14341443.CrossRefGoogle Scholar