Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T07:11:52.687Z Has data issue: false hasContentIssue false

Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers

Published online by Cambridge University Press:  04 June 2015

Christina Vanderwel
Affiliation:
Aerodynamics and Flight Mechanics Research Group, University of Southampton, Southampton SO17 1BJ, UK
Bharathram Ganapathisubramani*
Affiliation:
Aerodynamics and Flight Mechanics Research Group, University of Southampton, Southampton SO17 1BJ, UK
*
Email address for correspondence: g.bharath@soton.ac.uk

Abstract

Large-scale secondary flows can sometimes appear in turbulent boundary layers formed over rough surfaces, creating low- and high-momentum pathways along the surface (Barros & Christensen, J. Fluid Mech., vol. 748, 2014, R1). We investigate experimentally the dependence of these secondary flows on surface/flow conditions by measuring the flows over streamwise strips of roughness with systematically varied spanwise spacing. We find that the large-scale secondary flows are accentuated when the spacing of the roughness elements is roughly proportional to the boundary layer thickness ${\it\delta}$, and do not appear for cases with finer spacing. Cases with coarser spacing also generate ${\it\delta}$-scale secondary flows with tertiary flows in the spaces in between. These results show that the ratio of the spanwise length scale of roughness heterogeneity to the boundary layer thickness is a critical parameter for the occurrence of these secondary motions in turbulent boundary layers over rough walls.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amir, M. & Castro, I. P. 2011 Turbulence in rough-wall boundary layers: universality issues. Exp. Fluids 51 (2), 313326.Google Scholar
Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.CrossRefGoogle Scholar
Antonia, R. A. & Luxton, R. E. 1971 The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to rough. J. Fluid Mech. 48 (04), 721761.CrossRefGoogle Scholar
Barros, J. M. & Christensen, K. T. 2014 Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech. 748, R1.Google Scholar
Castro, I. P. 2007 Rough-wall boundary layers: mean flow universality. J. Fluid Mech. 585, 469485.CrossRefGoogle Scholar
Castro, I. P. & Robins, A. G. 1977 The flow around a surface-mounted cube in uniform and turbulent streams. J. Fluid Mech. 79 (02), 307335.CrossRefGoogle Scholar
Flack, K. A. & Schultz, M. P. 2014 Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26 (10), 101305.Google Scholar
Flack, K. A., Schultz, M. P. & Connelly, J. S. 2007 Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19 (9), 095104.Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36 (1), 173196.Google Scholar
Mejia-Alvarez, R. & Christensen, K. T. 2013 Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness. Phys. Fluids 25 (11), 115109.Google Scholar
Nugroho, B., Hutchins, N. & Monty, J. P. 2013 Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Intl J. Heat Fluid Flow 41, 90102.Google Scholar
Placidi, M. & Ganapathisubramani, B. 2015 Effects of large roughness on aerodynamic parameters and the roughness sublayer in turbulent boundary layers. J. Fluid Mech. (submitted).Google Scholar
Reynolds, R. T., Hayden, P., Castro, I. P. & Robins, A. G. 2007 Spanwise variations in nominally two-dimensional rough-wall boundary layers. Exp. Fluids 42 (2), 311320.CrossRefGoogle Scholar
Wang, Z.-Q. & Cheng, N.-S. 2006 Time-mean structure of secondary flows in open channel with longitudinal bedforms. Adv. Water Resour. 29 (11), 16341649.CrossRefGoogle Scholar
Willingham, D., Anderson, W., Christensen, K. T. & Barros, J. M. 2014 Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys. Fluids 26 (2), 025111.Google Scholar