Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T11:56:31.537Z Has data issue: false hasContentIssue false

The effects of stable stratification on the decay of initially isotropic homogeneous turbulence

Published online by Cambridge University Press:  11 December 2018

Stephen M. de Bruyn Kops*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
James J. Riley
Affiliation:
Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA
*
Email address for correspondence: debk@umass.edu

Abstract

We report on direct numerical simulations of the decay of initially isotropic, homogeneous turbulence subject to the application of stable density stratification. Flows were simulated for three different initial Reynolds numbers, but for the same initial Froude number. We find that the flows pass through three different dynamical regimes as they decay, depending on the local values of the Froude number and activity parameter. These regimes are analogous to those seen in the experimental study of Spedding (J. Fluid Mech., vol. 337, 1997, pp. 283–301) for the wake of a sphere. The flows initially decay with little influence of stratification, up to approximately one buoyancy period, when the local Froude number has dropped below 1. At this point the flows have adjusted to the density stratification, and, if the activity parameter is large enough, begin to decay at a slower rate and spread horizontally at a faster rate, consistent with the predictions of Davidson (J. Fluid Mech., vol. 663, 2010, pp. 268–292) and the scaling arguments of Billant & Chomaz (Phys. Fluids, vol. 13, 2001, pp. 1645–1651). We refer to this second regime as the stratified turbulence regime. As the flows continue to decay, ultimately the activity parameter drops below approximately 1 as viscous effects begin to dominate. In this regime, the flows have become quasi-horizontal, and approximately obey the scaling arguments of Godoy-Diana et al. (J. Fluid Mech., vol. 504, 2004, pp. 229–238).

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almalkie, S. & de Bruyn Kops, S. M. 2012a Energy dissipation rate surrogates in incompressible Navier–Stokes turbulence. J. Fluid Mech. 697, 204236.Google Scholar
Almalkie, S. & de Bruyn Kops, S. M. 2012b Kinetic energy dynamics in forced, homogeneous, and axisymmetric stably stratified turbulence. J. Turbul. 13 (29), 129.Google Scholar
Augier, P. & Billant, P. 2011 Onset of secondary instabilities on the zigzag instability in stratified fluids. J. Fluid Mech. 682, 120131.Google Scholar
Bartello, P. & Tobias, S. M. 2013 Sensitivity of stratified turbulence to buoyancy Reynolds number. J. Fluid Mech. 725, 122.Google Scholar
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 16451651.Google Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.Google Scholar
Britter, R. E., Hunt, J. C. R., Marsh, G. L. & Snyder, W. H. 1983 The effects of stable stratification on turbulent-diffusion and the decay of grid turbulence. J. Fluid Mech. 127, 2744.Google Scholar
de Bruyn Kops, S. M. 2015 Classical turbulence scaling and intermittency in stably stratified Boussinesq turbulence. J. Fluid Mech. 775, 436463.Google Scholar
de Bruyn Kops, S. M. & Riley, J. J. 1998 Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys. Fluids 10 (9), 21252127.Google Scholar
de Bruyn Kops, S. M. & Riley, J. J. 2000 Re-examining the thermal mixing layer with numerical simulations. Phys. Fluids 12 (1), 185192.Google Scholar
de Bruyn Kops, S. M., Riley, J. J. & Portwood, G. D. 2016 Toward direct numerical simulations of the stratified turbulence inertial range. In VIIIth International Symposium on Stratified Flows, eScholarship, University of California.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech. 48, 273337.Google Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469472.Google Scholar
Davidson, P. A. 2010 On the decay of Saffman turbulence subject to rotation, stratification or an imposed magnetic field. J. Fluid Mech. 663, 268292.Google Scholar
Deloncle, A., Billant, P. & Chomaz, J.-M. 2008 Nonlinear evolution of the zigzag instability in stratified fluids: a shortcut on the route to dissipation. J. Fluid Mech. 599, 229239.Google Scholar
Diamessis, P. J., Spedding, G. R. & Domaradzki, J. A. 2011 Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J. Fluid Mech. 671, 5295.Google Scholar
Dillon, T. M. & Caldwell, D. R. 1980 The batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res. 85 (C4), 19101916.Google Scholar
Durran, D. R. 1991 The third-order Adams–Bashforth method: an attractive alternative to leapfrog time differencing. Mon. Weath. Rev. 119, 702720.Google Scholar
Eswaran, V. & Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506520.Google Scholar
Fincham, A. M., Maxworthy, T. & Spedding, G. R. 1996 Energy dissipation and vortex structure in freely decaying, stratified grid turbulence. Dyn. Atmos. Oceans 23, 155169.Google Scholar
Gargett, A., Osborn, T. & Nasmyth, P. 1984 Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech. 144, 231280.Google Scholar
George, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids A 4 (7), 14921509.Google Scholar
Gibson, C. H. 1980 Fossil turbulence, salinity, and vorticity turbulence in the ocean. In Marine Turbulence (ed. Nihous, J. C.), pp. 221257. Elsevier.Google Scholar
Godoy-Diana, R., Chomaz, J.-M. & Billant, P. 2004 Vertical length scale selection for pancake vorticies in strongly stratified viscous fluids. J. Fluid Mech. 504, 229238.Google Scholar
Hebert, D. A. & de Bruyn Kops, S. M. 2006a Predicting turbulence in flows with strong stable stratification. Phys. Fluids 18 (6), 110.Google Scholar
Hebert, D. A. & de Bruyn Kops, S. M. 2006b Relationship between vertical shear rate and kinetic energy dissipation rate in stably stratified flows. Geophys. Res. Lett. 33, L06602.Google Scholar
Herring, J. R. & Métais, O. 1989 Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. 202, 97115.Google Scholar
Itsweire, E. C., Helland, K. N. & Van Atta, C. W. 1986 The evolution of grid-generated turbulence in a stably stratified fluid. J. Fluid Mech. 162, 299338.Google Scholar
Kolmogorov, A. N. 1941 Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.Google Scholar
Lienhard, J. H. & Van Atta, C. W. 1990 The decay of turbulence in thermally stratified flow. J. Fluid Mech. 210, 57112.Google Scholar
Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749761.Google Scholar
Lin, J.-T. & Pao, Y.-H. 1979 Wakes in stratified fluids: a review. Annu. Rev. Fluid Mech. 11, 317338.Google Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.Google Scholar
Liu, H. T. 1995 Energetics of grid turbulence in a stably stratified fluid. J. Fluid Mech. 296, 127157.Google Scholar
Lorenz, E. N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7, 157167.Google Scholar
Maffioli, A., Brethouwer, G. & Lindborg, E. 2016 Mixing efficiency in stratified turbulence. J. Fluid Mech. 794, R3.Google Scholar
Maffioli, A. & Davidson, P. A. 2016 Dynamics of stratified turbulence decaying from a high buoyancy Reynolds number. J. Fluid Mech. 786, 210233.Google Scholar
Métais, O. & Herring, J. R. 1989 Numerical simulations of freely evolving turbulence in stably stratified fluids. J. Fluid Mech. 202, 117148.Google Scholar
Meyers, J. & Meneveau, C. 2008 A functional form for the energy spectrum parametrizing bottleneck and intermittency effects. Phys. Fluids 20, 065109.Google Scholar
Oboukhov, A. M. 1941a Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR 32, 2224.Google Scholar
Oboukhov, A. M. 1941b Spectral energy distribution in a turbulent flow. Izv. Akad. Nauk. SSSR Geogr. Geofiz 5, 453466.Google Scholar
Oboukhov, A. M. 1949 Structure of temperature field in a turbulent flow. Izv. Akad. Nauk. SSSR Geogr. Geofiz 13, 5869.Google Scholar
Oboukhov, A. M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 7781.Google Scholar
Osborn, T. R. 1980 Estimates of the local-rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 8389.Google Scholar
Overholt, M. R. & Pope, S. B. 1998 A deterministic forcing scheme for direct numerical simulations of turbulence. Comput. Fluids 27, 1128.Google Scholar
Perot, J. B. & de Bruyn Kops, S. M. 2006 Modeling turbulent dissipation at low and moderate Reynolds numbers. J. Turbul. 7, 114.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Portwood, G. D., de Bruyn Kops, S. M., Taylor, J. R., Salehipour, H. & Caulfield, C. P. 2016 Robust identification of dynamically distinct regions in stratified turbulence. J. Fluid Mech. 807, R2 (14 pages).Google Scholar
Praud, O., Fincham, A. M. & Sommeria, J. 2005 Decaying grid turbulence in a strongly stratified fluid. J. Fluid Mech. 522, 133.Google Scholar
Rao, K. J. & de Bruyn Kops, S. M. 2011 A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow. Phys. Fluids 23, 065110.Google Scholar
Riley, J. J. & de Bruyn Kops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15 (7), 20472059.Google Scholar
Riley, J. J., Metcalfe, R. W. & Weissman, M. A. 1981 Direct numerical simulations of homogeneous turbulence in density stratified flows. In Proceedings of the AIP Conference Nonlinear Properties of Internal Waves (ed. West, B. J.), pp. 79112. American Institute of Physics.Google Scholar
Saffman, P. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27 (3), 581593.Google Scholar
Salehipour, H. & Peltier, W. 2015 Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech. 775, 464500.Google Scholar
Skrbek, L. & Stalp, S. R. 2000 On the decay of homogeneous isotropic turbulence. Phys. Fluids 12 (8), 19972019.Google Scholar
Smyth, W. D., Klaassen, G. P. & Peltier, W. R. 1988 Finite-amplitude holmboe waves. Geophys. Astrophys. Fluid Dyn. 43, 181222.Google Scholar
Smyth, W. D., Moum, J. N. & Caldwell, D. R. 2001 The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr. 31, 19691992.Google Scholar
Spedding, G. R. 1997 The evolution of initially turbulent bluff-body wakes at high internal Froude number. J. Fluid Mech. 337, 283301.Google Scholar
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7, 27782784.Google Scholar
Sreenivasan, K. R. 1998 An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10 (2), 528529.Google Scholar
Stillinger, D. C., Helland, K. N. & Van Atta, C. W. 1983 Experiments on the transition of homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech. 131, 91122.Google Scholar
Watanabe, T., Riley, J. J., de Bruyn Kops, S. M., Diamessis, P. J. & Zhou, Q. 2016 Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J. Fluid Mech. 797, R1.Google Scholar
Yoon, K. H. & Warhaft, Z. 1990 The evolution of grid-generated turbulence under conditions of stable thermal stratification. J. Fluid Mech. 215, 601638.Google Scholar