Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T10:13:45.589Z Has data issue: false hasContentIssue false

Energy focusing in shock-collapsed bubble arrays

Published online by Cambridge University Press:  17 August 2020

N. Bempedelis
Affiliation:
Department of Mechanical Engineering, University College London, LondonWC1E 7JE, UK
Y. Ventikos*
Affiliation:
Department of Mechanical Engineering, University College London, LondonWC1E 7JE, UK
*
Email address for correspondence: y.ventikos@ucl.ac.uk

Abstract

During its collapse a bubble can draw and concentrate energy from its surroundings. In the present work, we investigate the behaviour of certain multibubble configurations that have the potential for achieving significant levels of energy focusing. The dynamics of these configurations are studied for the first time in three dimensions, and are shown to be significantly different from those in two dimensions. Novel observations regarding focusing regimes in collapsing arrays are presented. Finally, through a series of numerical experiments on previously unexplored arrangements, we demonstrate that substantially enhanced levels of energy concentration can be achieved.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apazidis, N. 2016 Numerical investigation of shock induced bubble collapse in water. Phys. Fluids 28 (4), 046101.CrossRefGoogle Scholar
Bailey, M. R., Khokhlova, V. A., Sapozhnikov, O. A., Kargl, S. G. & Crum, L. A. 2003 Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust. Phys. 49 (4), 369388.CrossRefGoogle Scholar
Ball, G. J., Howell, B. P., Leighton, T. G. & Schofield, M. J. 2000 Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation. Shock Waves 10 (4), 265276.CrossRefGoogle Scholar
Bempedelis, N. & Ventikos, Y. 2020 A simplified approach for simulations of multidimensional compressible multicomponent flows: the grid-aligned ghost fluid method. J. Comput. Phys. 405, 109129.CrossRefGoogle Scholar
Betney, M. R., Tully, B., Hawker, N. A. & Ventikos, Y. 2015 Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid. Phys. Fluids 27 (3), 036101.CrossRefGoogle Scholar
Bo, W., Liu, X., Glimm, J. & Li, X. 2011 A robust front tracking method: verification and application to simulation of the primary breakup of a liquid jet. SIAM. J. Sci. Comput. 33 (4), 15051524.CrossRefGoogle Scholar
Bourne, N. K. 2002 On the collapse of cavities. Shock Waves 11 (6), 447455.CrossRefGoogle Scholar
Bourne, N. K. & Field, J. E. 1991 Bubble collapse and the initiation of explosion. Proc. R. Soc. Lond. A 435 (1894), 423435.Google Scholar
Bourne, N. K. & Field, J. E. 1992 Shock-induced collapse of single cavities in liquids. J. Fluid Mech. 244, 225240.CrossRefGoogle Scholar
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74 (2), 425484.CrossRefGoogle Scholar
Coleman, A. J., Saunders, J. E., Crum, L. A. & Dyson, M. 1987 Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med. Biol. 13 (2), 6976.CrossRefGoogle ScholarPubMed
Dear, J. P. & Field, J. E. 1988 A study of the collapse of arrays of cavities. J. Fluid Mech. 190, 409425.CrossRefGoogle Scholar
Dear, J. P., Field, J. E. & Walton, A. J. 1988 Gas compression and jet formation in cavities collapsed by a shock wave. Nature 332 (6164), 505508.CrossRefGoogle Scholar
Ding, Z. & Gracewski, S. M. 1996 The behaviour of a gas cavity impacted by a weak or strong shock wave. J. Fluid Mech. 309, 183209.CrossRefGoogle Scholar
Du, J., Fix, B., Glimm, J., Jia, X., Li, X., Li, Y. & Wu, L. 2006 A simple package for front tracking. J. Comput. Phys. 213 (2), 613628.CrossRefGoogle Scholar
Gaitan, D. F., Crum, L. A., Church, C. C. & Roy, R. A. 1992 Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am. 91 (6), 31663183.CrossRefGoogle Scholar
Glimm, J., Grove, J., Lindquist, B., McBryan, O. A. & Tryggvason, G. 1988 The bifurcation of tracked scalar waves. SIAM J. Sci. Stat. Comput. 9 (1), 6179.CrossRefGoogle Scholar
Glimm, J., Grove, J. W., Li, X. L. & Tan, D. C. 2000 Robust computational algorithms for dynamic interface tracking in three dimensions. SIAM J. Sci. Comput. 21 (6), 22402256.CrossRefGoogle Scholar
Glimm, J., Isaacson, E., Marchesin, D. & McBryan, O. 1981 Front tracking for hyperbolic systems. Adv. Appl. Maths 2 (1), 91119.CrossRefGoogle Scholar
Glimm, J. & McBryan, O. A. 1985 A computational model for interfaces. Adv. Appl. Maths 6 (4), 422435.CrossRefGoogle Scholar
Grove, J. W. & Menikoff, R. 1990 Anomalous reflection of a shock wave at a fluid interface. J. Fluid Mech. 219, 313336.CrossRefGoogle Scholar
Hawker, N. A. & Ventikos, Y. 2012 Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study. J. Fluid Mech. 701, 5997.CrossRefGoogle Scholar
Johnsen, E. & Colonius, T. 2008 Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124 (4), 20112020.CrossRefGoogle ScholarPubMed
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Lauer, E., Hu, X. Y., Hickel, S. & Adams, N. A. 2012 Numerical investigation of collapsing cavity arrays. Phys. Fluids 24 (5), 052104.CrossRefGoogle Scholar
Lindl, J. 1995 Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2 (11), 39334024.CrossRefGoogle Scholar
Ohl, C. D. & Ikink, R. 2003 Shock-wave-induced jetting of micron-size bubbles. Phys. Rev. Lett. 90 (21), 214502.CrossRefGoogle ScholarPubMed
Ohl, C. D. & Ohl, S. W. 2013 Shock wave interaction with single bubbles and bubble clouds. In Bubble Dynamics and Shock Waves, pp. 331. Springer.CrossRefGoogle Scholar
Philipp, A., Delius, M., Scheffczyk, C., Vogel, A. & Lauterborn, W. 1993 Interaction of lithotripter-generated shock waves with air bubbles. J. Acoust. Soc. Am. 93 (5), 24962509.CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Rayleigh, Lord 1917 VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. London, Edinburgh Dublin Philos. Mag. J. Sci. 34 (200), 9498.CrossRefGoogle Scholar
Sankin, G. N., Simmons, W. N., Zhu, S. L. & Zhong, P. 2005 Shock wave interaction with laser-generated single bubbles. Phys. Rev. Lett. 95 (3), 034501.CrossRefGoogle ScholarPubMed
Suslick, K. S. 1990 Sonochemistry. Science 247 (4949), 14391445.CrossRefGoogle ScholarPubMed
Swantek, A. B. & Austin, J. M. 2010 Collapse of void arrays under stress wave loading. J. Fluid Mech. 649, 399427.CrossRefGoogle Scholar
Thompson, L. H. & Doraiswamy, L. K. 1999 Sonochemistry: science and engineering. Ind. Engng Chem. Res. 38 (4), 12151249.CrossRefGoogle Scholar
Tomita, Y., Shima, A. & Ohno, T. 1984 Collapse of multiple gas bubbles by a shock wave and induced impulsive pressure. J. Appl. Phys. 56 (1), 125131.CrossRefGoogle Scholar
Tomita, Y., Shima, A. & Takahashi, K. 1983 The collapse of a gas bubble attached to a solid wall by a shock wave and the induced impact pressure. J. Fluids Engng 105 (3), 341347.CrossRefGoogle Scholar
Wermelinger, F., Hejazialhosseini, B., Hadjidoukas, P., Rossinelli, D. & Koumoutsakos, P. 2016 An efficient compressible multicomponent flow solver for heterogeneous CPU/GPU architectures. In Proceedings of the Platform for Advanced Scientific Computing Conference, article 8. ACM.CrossRefGoogle Scholar
Xu, Z., Raghavan, M., Hall, T. L., Chang, C. W., Mycek, M. A., Fowlkes, J. B. & Cain, C. A. 2007 High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 (10), 20912101.Google ScholarPubMed

Bempedelis and Ventikos supplementary movie 1

Volume rendering of the density gradient magnitude, p=1GPa shock-induced collapse of a triangular array of three spherical air bubbles in water.

Download Bempedelis and Ventikos supplementary movie 1(Video)
Video 23.8 MB

Bempedelis and Ventikos supplementary movie 2

Volume rendering of the density gradient magnitude, p=1GPa shock-induced collapse of a pyramidal array of five spherical air bubbles in water.

Download Bempedelis and Ventikos supplementary movie 2(Video)
Video 34.1 MB

Bempedelis and Ventikos supplementary movie 3

Volume rendering of the density gradient magnitude, p=1GPa shock-induced collapse of a pair of toroidal and spherical air bubbles in water.

Download Bempedelis and Ventikos supplementary movie 3(Video)
Video 39.5 MB