Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T14:43:23.817Z Has data issue: false hasContentIssue false

Enhanced heat transport in thermal convection with suspensions of rod-like expandable particles

Published online by Cambridge University Press:  04 October 2021

Shi-Yuan Hu
Affiliation:
NYU-ECNU Joint Research Institute of Physics at NYU Shanghai, Shanghai200062, China Applied Math Lab, Courant Institute, New York University, New York, NY10012, USA Department of Physics, New York University, New York, NY10003, USA
Kai-Zhe Wang
Affiliation:
NYU-ECNU Joint Research Institute of Physics at NYU Shanghai, Shanghai200062, China Applied Math Lab, Courant Institute, New York University, New York, NY10012, USA Department of Physics, New York University, New York, NY10003, USA
Lai-Bing Jia
Affiliation:
NYU-ECNU Joint Research Institute of Physics at NYU Shanghai, Shanghai200062, China Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, G4 0LZGlasgow, UK
Jin-Qiang Zhong
Affiliation:
School of Physics Science and Engineering, Tongji University, Shanghai200092, China
Jun Zhang*
Affiliation:
NYU-ECNU Joint Research Institute of Physics at NYU Shanghai, Shanghai200062, China Applied Math Lab, Courant Institute, New York University, New York, NY10012, USA Department of Physics, New York University, New York, NY10003, USA
*
Email address for correspondence: jun@cims.nyu.edu

Abstract

Thermal convection of fluid is a more efficient way than diffusion to carry heat from hot sources to cold places. Here, we experimentally study the Rayleigh–Bénard convection of aqueous glycerol solution in a cubic cell with suspensions of rod-like particles made of polydimethylsiloxane. The particles are inertial due to their large thermal expansion coefficient and finite sizes. The thermal expansion coefficient of the particles is three times larger than that of the background fluid. This contrast makes the suspended particles lighter than the local fluid in hot regions and heavier in cold regions. The heat transport is enhanced at relatively large Rayleigh number ($\textit {Ra}$) but reduced at small $\textit {Ra}$. We demonstrate that the increase of Nusselt number arises from the particle–boundary layer interactions: the particles act as ‘active’ mixers of the flow and temperature fields across the boundary layers.

Type
JFM Rapids
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerman, A.S., Kirkpatrick, M.P., Stevens, D.E. & Toon, O.B. 2004 The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432, 10141017.CrossRefGoogle ScholarPubMed
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.CrossRefGoogle Scholar
Alards, K.M.J., Kunnen, R.P.J., Clercx, H.J.H. & Toschi, F. 2019 Statistical properties of thermally expandable particles in soft-turbulence Rayleigh–Bénard convection. Eur. Phys. J. E 42, 126.CrossRefGoogle ScholarPubMed
Alméras, E., Mathai, V., Lohse, D. & Sun, C. 2017 Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence. J. Fluid Mech. 825, 10911112.CrossRefGoogle Scholar
Auguste, F. & Magnaudet, J. 2018 Path oscillations and enhanced drag of light rising spheres. J. Fluid Mech. 841, 228266.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Bao, Y., Chen, J., Liu, B.-F., She, Z.-S., Zhang, J. & Zhou, Q. 2015 Enhanced heat transport in partitioned thermal convection. J. Fluid Mech. 784, R5.CrossRefGoogle Scholar
Cardin, P. & Olson, P. 1994 Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys. Earth Planet. Inter. 82, 235259.CrossRefGoogle Scholar
Cartwright, J.H.E., Feudel, U., Károlyi, G., de Moura, A., Piro, O. & Tél, T. 2010 Dynamics of finite-size particles in chaotic fluid flows. In Nonlinear Dynamics and Chaos: Advances and Perspectives (ed. M. Thiel, J. Kurths, M.C. Romano, G. Károlyi & A. Moura), pp. 51–87. Springer.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Cattaneo, F., Emonet, T. & Weiss, N. 2003 On the interaction between convection and magnetic fields. Astrophys. J. 588, 11831198.CrossRefGoogle Scholar
Cheng, N.-S. 2008 Formula for the viscosity of a glycerol-water mixture. Ind. Engng Chem. Res. 47, 32853288.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.CrossRefGoogle ScholarPubMed
Chong, K.L., Yang, Y., Huang, S.-D., Zhong, J.-Q., Stevens, R.J.A.M., Verzicco, R., Lohse, D. & Xia, K.-Q. 2017 Confined Rayleigh–Bénard, rotating Rayleigh–Bénard, and double diffusive convection: a unifying view on turbulent transport enhancement through coherent structure manipulation. Phys. Rev. Lett. 119, 064501.CrossRefGoogle ScholarPubMed
Dabiri, S. & Tryggvason, G. 2015 Heat transfer in turbulent bubbly flow in vertical channels. Chem. Engng Sci. 122, 106113.CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 1998 Enhanced heat transport in turbulent convection over a rough surface. Phys. Rev. Lett. 81, 987.CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 2001 Temperature fluctuations in a convection cell with rough upper and lower surfaces. Phys. Rev. E 63, 046303.CrossRefGoogle Scholar
Fung, J.C.H. & Vassilicos, J.C. 2003 Inertial particle segregation by turbulence. Phys. Rev. E 68, 046309.CrossRefGoogle ScholarPubMed
Guzman, D.N., Xie, Y., Chen, S., Rivas, D.F., Sun, C., Lohse, D. & Ahlers, G. 2016 Heat-flux enhancement by vapour-bubble nucleation in Rayleigh–Bénard turbulence. J. Fluid Mech. 787, 331366.CrossRefGoogle Scholar
Hartmann, D.L., Moy, L.A. & Fu, Q. 2001 Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14, 44954511.2.0.CO;2>CrossRefGoogle Scholar
Huang, S.-D., Kaczorowski, M., Ni, R. & Xia, K.-Q. 2013 Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111, 104501.CrossRefGoogle ScholarPubMed
Incropera, F.P. 1999 Liquid Cooling of Electronic Devices by Single-Phase Convection. John Wiley & Sons.Google Scholar
Jones, C.A. 2011 Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech. 43, 583614.CrossRefGoogle Scholar
Joshi, P., Rajaei, H., Kunnen, R.P.J. & Clercx, H.J.H. 2016 Effect of particle injection on heat transfer in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 1, 084301.CrossRefGoogle Scholar
Kadanoff, L.P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54, 34.CrossRefGoogle Scholar
Kim, J. 2009 Review of nucleate pool boiling bubble heat transfer mechanisms. Intl J. Multiphase Flow 35, 10671076.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Koyaguchi, T., Hallworth, M.A., Huppert, H.E., Sparks, R. & Stephen, J. 1990 Sedimentation of particles from a convecting fluid. Nature 343, 447450.CrossRefGoogle Scholar
Lakkaraju, R., Stevens, R.J.A.M., Oresta, P., Verzicco, R. & Lohse, D. 2013 Heat transport in bubbling turbulent convection. Proc. Natl Acad. Sci. USA 110, 92379242.CrossRefGoogle ScholarPubMed
Lakkaraju, R., Toschi, F. & Lohse, D. 2014 Bubbling reduces intermittency in turbulent thermal convection. J. Fluid Mech. 745, 124.CrossRefGoogle Scholar
Linden, P.F. 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201238.CrossRefGoogle Scholar
Liu, H.-R., Chong, K.L., Ng, C.S., Verzicco, R. & Lohse, D. 2021 Enhancing heat transport in multiphase thermally driven turbulence. arXiv:2105.11327.Google Scholar
Lopez, D. & Guazzelli, E. 2017 Inertial effects on fibers settling in a vortical flow. Phys. Rev. Fluids 2, 024306.CrossRefGoogle Scholar
Mark, J.E. 1999 Polymer Data Handbook. Oxford University Press.Google Scholar
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.CrossRefGoogle Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle–laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11, 529559.CrossRefGoogle Scholar
Niemela, J.J., Skrbek, L., Sreenivasan, K.R. & Donnelly, R.J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Ouellette, N.T., O'Malley, P.J.J. & Gollub, J.P. 2008 Transport of finite-sized particles in chaotic flow. Phys. Rev. Lett. 101, 174504.CrossRefGoogle ScholarPubMed
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G.A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.CrossRefGoogle ScholarPubMed
Sackmann, E.K., Fulton, A.L. & Beebe, D.J. 2014 The present and future role of microfluidics in biomedical research. Nature 507, 181189.CrossRefGoogle ScholarPubMed
Saw, E.W., Shaw, R.A., Ayyalasomayajula, S., Chuang, P.Y. & Gylfason, Á. 2008 Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100, 214501.CrossRefGoogle ScholarPubMed
Shaw, R.A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.CrossRefGoogle Scholar
Shen, Y., Tong, P. & Xia, K.-Q. 1996 Turbulent convection over rough surfaces. Phys. Rev. Lett. 76 (6), 908.CrossRefGoogle ScholarPubMed
Silano, G., Sreenivasan, K.R. & Verzicco, R. 2010 Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between $10^{-1}$ and $10^4$ and Rayleigh numbers between $10^5$ and $10^9$. J. Fluid Mech. 662, 409446.CrossRefGoogle Scholar
Solomon, T.H. & Gollub, J.P. 1988 Chaotic particle transport in time-dependent Rayleigh–Bénard convection. Phys. Rev. A 38, 6280.CrossRefGoogle ScholarPubMed
Sudharsan, M., Brunton, S.L. & Riley, J.J. 2016 Lagrangian coherent structures and inertial particle dynamics. Phys. Rev. E 93, 033108.CrossRefGoogle ScholarPubMed
Verzicco, R. 2004 Effects of nonperfect thermal sources in turbulent thermal convection. Phys. Fluids 16, 19651979.CrossRefGoogle Scholar
Volk, A. & Kähler, C.J. 2018 Density model for aqueous glycerol solutions. Exp. Fluids 59, 75.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.CrossRefGoogle Scholar
Wang, Z., Mathai, V. & Sun, C. 2019 Self-sustained biphasic catalytic particle turbulence. Nat. Commun. 10, 3333.CrossRefGoogle ScholarPubMed
Xia, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3, 052001.CrossRefGoogle Scholar
Zhong, J.-Q., Funfschilling, D. & Ahlers, G. 2009 Enhanced heat transport by turbulent two-phase Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 124501.CrossRefGoogle ScholarPubMed
Zocchi, G., Moses, E. & Libchaber, A. 1990 Coherent structures in turbulent convection, an experimental study. Physica A 166, 387407.CrossRefGoogle Scholar

Hu et al. supplementary movie

The suspended PDMS particles interact with the background turbulent flows with several forms of interactions between particles and the boundary layers highlighted.

Download Hu et al. supplementary movie(Video)
Video 9.6 MB