Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T18:29:47.834Z Has data issue: false hasContentIssue false

Fully nonlinear mode competition in magnetised Taylor–Couette flow

Published online by Cambridge University Press:  11 June 2020

R. Ayats*
Affiliation:
Departament de Física, Universitat Politècnica de Catalunya, 08034Barcelona, Spain
K. Deguchi*
Affiliation:
School of Mathematics, Monash University, VIC 3800, Australia
F. Mellibovsky*
Affiliation:
Departament de Física, Universitat Politècnica de Catalunya, 08034Barcelona, Spain
A. Meseguer*
Affiliation:
Departament de Física, Universitat Politècnica de Catalunya, 08034Barcelona, Spain

Abstract

We study the nonlinear mode competition of various spiral instabilities in magnetised Taylor–Couette flow. The resulting finite-amplitude mixed-mode solution branches are tracked using the annular-parallelogram periodic domain approach developed by Deguchi & Altmeyer (Phys. Rev. E, vol. 87, 2013, 043017). Mode competition phenomena are studied in both the anticyclonic and cyclonic Rayleigh-stable regimes. In the anticyclonic sub-rotation regime, with the inner cylinder rotating faster than the outer, Hollerbach et al. (Phys. Rev. Lett., vol. 104, 2010, 044502) found competing axisymmetric and non-axisymmetric magneto-rotational linearly unstable modes within the parameter range where experimental investigation is feasible. Here we confirm the existence of mode competition and compute the nonlinear mixed-mode solutions that result from it. In the cyclonic super-rotating regime, with the inner cylinder rotating slower than the outer, Deguchi (Phys. Rev. E, vol. 95, 2017, 021102) recently found a non-axisymmetric purely hydrodynamic linear instability that coexists with the non-axisymmetric magneto-rotational instability discovered a little earlier by Rüdiger et al. (Phys. Fluids, vol. 28, 2016, 014105). We show that nonlinear interactions of these instabilities give rise to rich pattern-formation phenomena leading to drastic angular momentum transport enhancement/reduction.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altmeyer, S. & Hoffmann, C. 2010 Secondary bifurcation of mixed-cross-spirals connecting travelling wave solutions. New J. Phys. 12, 113035.CrossRefGoogle Scholar
Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.CrossRefGoogle Scholar
Avila, M., Meseguer, A. & Marques, F. 2006 Double Hopf bifurcation in corotating spiral Poiseuille flow. Phys. Fluids 18, 064101.CrossRefGoogle Scholar
Balbus, S. A. 2017 When is high Reynolds number shear flow not turbulent? J. Fluid Mech. 824, 14.CrossRefGoogle Scholar
Balbus, S. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetised disks. I. Linear analysis. Astrophys. J. 376, 214222.CrossRefGoogle Scholar
Burin, M. J. & Czarnocki, C. J. 2012 Subcritical transition and spiral turbulence in circular Couette flow. J. Fluid Mech. 709, 106122.CrossRefGoogle Scholar
Chandrasekhar, S. 1960 The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl Acad. Sci. USA 46, 253257.CrossRefGoogle ScholarPubMed
Child, A., Kersalé, E. & Hollerbach, R. 2015 Nonaxisymmetric linear instability of cylindrical magnetohydrodynamic Taylor–Couette flow. Phys. Rev. E 92, 033011.Google ScholarPubMed
Chossat, P. & Iooss, G. 1994 The Couette-Taylor Problem. Springer.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.CrossRefGoogle Scholar
Daly, C. A., Schneider, T. M., Schlatter, P. & Peake, N. 2014 Secondary instability and tertiary states in rotating plane Couette flow. J. Fluid Mech. 761, 2761.CrossRefGoogle Scholar
Davey, A., DiPrima, R. C. & Stuart, J. T. 1968 On the instability of Taylor vortices. J. Fluid Mech. 31, 1752.CrossRefGoogle Scholar
Davidson, P. A.Introduction to Magnetohydrodynamics, 2nd edn. Cambridge University Press.Google Scholar
Deguchi, K. 2016 The rapid-rotation limit of the neutral curve for Taylor–Couette flow. J. Fluid Mech. 808, R2.CrossRefGoogle Scholar
Deguchi, K. 2017 Linear instability in Rayleigh-stable Taylor–Couette flow. Phys. Rev. E 95, 021102.Google ScholarPubMed
Deguchi, K. 2019a High-speed shear-driven dynamos. Part 2. Numerical analysis. J. Fluid Mech. 876, 830858.CrossRefGoogle Scholar
Deguchi, K. 2019b High-speed standard magneto-rotational instability. J. Fluid Mech. 865, 492522.CrossRefGoogle Scholar
Deguchi, K. & Altmeyer, S. 2013 Fully nonlinear mode competitions of nearly bicritical spiral or Taylor vortices in Taylor–Couette flow. Phys. Rev. E 87, 043017.Google ScholarPubMed
Deguchi, K., Meseguer, A. & Mellibovsky, F. 2014 Subcritical equilibria in Taylor–Couette flow. Phys. Rev. Lett. 112, 184502.CrossRefGoogle ScholarPubMed
Deguchi, K. & Nagata, M. 2011 Bifurcations and instabilities in sliding Couette flow. J. Fluid Mech. 678, 156178.CrossRefGoogle Scholar
Doering, C. R. & Gibbon, J. D. 1995 Applied Analysis of the Navier–Stokes Equations. Cambridge University Press.CrossRefGoogle Scholar
Dong, S. 2009 Evidence for internal structures of spiral turbulence. Phys. Rev. E 80, 067301.Google ScholarPubMed
Edlund, E. M. & Ji, H. 2014 Nonlinear stability of laboratory quasi-Keplerian flows. Phys. Rev. E 89, 021004.Google ScholarPubMed
Esser, A. & Grossmann, S. 1996 Analytic expression for Taylor–Couette stability boundary. Phys. Fluids 8, 18141819.CrossRefGoogle Scholar
Golubitsky, M., Stewart, I. & Schaeffer, D. G. 1988 Singularities and Groups in Bifurcation Theory, App. Math. Sci., vol. 2. Springer.CrossRefGoogle Scholar
Goodman, J. & Ji, H. 2002 Magnetorotational instability of dissipative Couette flow. J. Fluid Mech. 462, 365382.CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Sun, C. 2016 High–Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.CrossRefGoogle Scholar
Guseva, A., Willis, A. P., Hollerbach, R. & Avila, M. 2015 Transition to magnetorotational turbulence in Taylor–Couette flow with imposed azimuthal magnetic field. New J. Phys. 17, 093018.Google Scholar
Guseva, A., Willis, A. P., Hollerbach, R. & Avila, M. 2017 Transport properties of the azimuthal magnetorotational instability. Astrophys. J. 849 (2), 92.CrossRefGoogle Scholar
Hegseth, J. J., Andereck, C. D., Hayot, F. & Pomeau, Y. 1989 Spiral turbulence and phase dynamics. Phys. Rev. Lett. 62 (3), 257260.CrossRefGoogle ScholarPubMed
Herron, I. & Soliman, F. 2006 The stability of Couette flow in a toroidal magnetic field. Appl. Maths Lett. 19, 11131117.CrossRefGoogle Scholar
Hollerbach, R. & Rüdiger, G. 2005 New type of magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 95, 124501.CrossRefGoogle ScholarPubMed
Hollerbach, R., Teeluck, V. & Rüdiger, G. 2010 Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 104, 044502.CrossRefGoogle ScholarPubMed
Iooss, G. 1986 Secondary bifurcations of Taylor vortices into wavy inflow or outflow boundaries. J. Fluid Mech. 173, 273288.CrossRefGoogle Scholar
Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343346.CrossRefGoogle ScholarPubMed
Kelley, C. T. 2003 Solving Nonlinear Equations with Newton’s Method. SIAM.CrossRefGoogle Scholar
Kirillov, O. N. & Stefani, F. 2013 Extending the range of the inductionless magnetorotational instability. Phys. Rev. Lett. 111, 061103.CrossRefGoogle ScholarPubMed
Kirillov, O. N., Stefani, F. & Fukumoto, Y. 2012 A unifying picture of helical and azimuthal magnetorotational instability, and the universal significance of the Liu limit. Astrophys. J. 756 (1), 83.CrossRefGoogle Scholar
Kirillov, O. N., Stefani, F. & Fukumoto, Y. 2014 Local instabilities in magnetized rotational flows: a short-wavelength approach. J. Fluid Mech. 760, 591633.CrossRefGoogle Scholar
Kuznetsov, Y. A. 2004 Elements of Applied Bifurcation Theory, 3rd edn. Springer.CrossRefGoogle Scholar
Liu, W., Goodman, J., Herron, I. & Ji, H. 2006 Helical magnetorotational instability in magnetized Taylor–Couette flow. Phys. Rev. E 74, 056302.Google ScholarPubMed
Lopez, J. M. & Avila, M. 2017 Boundary-layer turbulence in experiments on quasi-Keplerian flows. J. Fluid Mech. 817, 2134.CrossRefGoogle Scholar
Mamatsashvili, G., Stefani, F., Hollerbach, R. & Rüdiger, G. 2019 Two types of axisymmetric helical magnetorotational instability in rotating flows with positive shear. Phys. Rev. Fluids 4, 103905.CrossRefGoogle Scholar
Mellibovsky, F. & Meseguer, A. 2006 The role of streamwise perturbations in pipe flow transition. Phys. Fluids 18, 074104.CrossRefGoogle Scholar
Mellibovsky, F. & Meseguer, A. 2015 A mechanism for streamwise localisation of nonlinear waves in shear flows. J. Fluid Mech. 779, R1.CrossRefGoogle Scholar
Meseguer, A., Avila, M., Mellibovsky, F. & Marques, F. 2007 Solenoidal spectral formulations for the computation of secondary flows in cylindrical and annular geometries. Eur. Phys. J. Spec. Top. 146, 249259.CrossRefGoogle Scholar
Meseguer, A., Mellibovsky, F., Avila, M. & Marques, F. 2009 Instability mechanisms and transition scenarios of spiral turbulence in Taylor–Couette flow. Phys. Rev. E 80, 046315.Google ScholarPubMed
Michael, D. 1954 The stability of an incompressible electrically conducting fluid rotating about an axis when current flows parallel to the axis. Mathematika 1, 4550.CrossRefGoogle Scholar
Nagata, M. 1986 Bifurcations in Couette flow between almost corotating cylinders. J. Fluid Mech. 169, 229250.CrossRefGoogle Scholar
Ostilla-Monico, R., Verzicco, R. & Lohse, D. 2016 Turbulent Taylor–Couette flow with stationary inner cylinder. J. Fluid Mech. 799, R1.CrossRefGoogle Scholar
Pinter, A., Lücke, M. & Hoffmann, C. 2006 Competition between traveling fluid waves of left and right spiral vortices and their different amplitude combinations. Phys. Rev. Lett. 96, 044506.CrossRefGoogle ScholarPubMed
Prigent, A., Gregoire, G., Chate, H., Dauchot, O. & van Saarloos, W. 2002 Finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89, 014501.CrossRefGoogle ScholarPubMed
Roberts, P. H. 1964 The stability of hydromagnetic Couette flow. Proc. Camb. Phil. Soc. 60, 635651.CrossRefGoogle Scholar
Rüdiger, G., Gellert, M., Hollerbach, R., Schultz, M. & Stefani, F. 2018a Stability and instability of hydromagnetic Taylor–Couette flows. Phys. Rep. 741, 189.CrossRefGoogle Scholar
Rüdiger, G. & Hollerbach, R. 2007 Comment on ‘helical magnetorotational instability in magnetized Taylor–Couette flow’. Phys. Rev. E 76, 068301.Google Scholar
Rüdiger, G., Hollerbach, R., Stefani, F., Gundrum, T., Gerbeth, G. & Rosner, R. 2006 The traveling-wave MRI in cylindrical Taylor–Couette flow: comparing wavelengths and speeds in theory and experiment. Astrophys. J. 649, L145L147.CrossRefGoogle Scholar
Rüdiger, G., Schultz, M., Gellert, M. & Stefani, F. 2016 Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28, 014105.CrossRefGoogle Scholar
Rüdiger, G., Schultz, M., Gellert, M. & Stefani, F. 2018b Azimuthal magnetorotational instability with super-rotation. J. Plasma Phys. 84, 735840101.CrossRefGoogle Scholar
Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M. & Hollerbach, R. 2014 Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505.CrossRefGoogle Scholar
Stefani, F., Gerbeth, G., Gundrum, T., Hollerbach, R., Priede, J., Rüdiger, G. & Szklarski, J. 2009 Helical magnetorotational instability in a Taylor–Couette flow with strongly reduced Ekman pumping. Phys. Rev. E 80, 066303.Google Scholar
Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Schultz, J., Szklarski, J. & Hollerbach, R. 2006 Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502.CrossRefGoogle Scholar
Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Szklarski, J. & Hollerbach, R. 2007 Experiments on the magnetorotational instability in helical magnetic fields. New J. Phys. 9, 295.CrossRefGoogle Scholar
Stefani, F. & Kirillov, O. N. 2015 Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001.Google ScholarPubMed
Tagg, R., Edwards, W. S., Swinney, H. L. & Marcus, P. S. 1989 Nonlinear standing waves in Couette–Taylor flow. Phys. Rev. A 39, 37343737.CrossRefGoogle ScholarPubMed
Tayler, R. J. 1957 Hydromagnetic instabilities of an ideally conducting fluid. Proc. R. Phys. Soc. 70, 3148.CrossRefGoogle Scholar
Taylor, G. I. 1923 Stability of a viscous fluid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.Google Scholar
Van Atta, C. 1966 Exploratory measurements in spiral turbulence. J. Fluid Mech. 25, 495512.CrossRefGoogle Scholar
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 13891404.Google Scholar
Wendt, F. 1933 Turbulente strömungen zwischen zwei rotierenden koaxialen zylindern. Ing.-Arch. 4, 577595.CrossRefGoogle Scholar