Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T01:36:28.008Z Has data issue: false hasContentIssue false

Helicity generation and subcritical behaviour in rapidly rotating dynamos

Published online by Cambridge University Press:  19 August 2011

Binod Sreenivasan
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India
Chris A. Jones*
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
*
Email address for correspondence: C.A.Jones@maths.leeds.ac.uk,bsreeni@iitk.ac.in

Abstract

Numerical dynamo models based on convection-driven flow in a rapidly rotating spherical shell frequently give rise to strong, stable, dipolar magnetic fields. Dipolar dynamos can be subcritical in the sense that strong magnetic fields are sustained at a Rayleigh number lower than that required for a dynamo to grow from a small seed field. In this paper we find subcritical behaviour in dynamos in line with previous studies. We explore the action of Lorentz force in a rotating dynamo which gives rise to a strong preference for dipolar modes over quadrupolar modes, and also makes subcritical behaviour more likely to occur. The coherent structures that arise in rapidly rotating convection are affected by the magnetic field in ways which strongly increase their helicity, particularly if the magnetic field is dipolar. As helicity enhances dynamo action, an existing magnetic field can hold itself up, which leads to subcritical behaviour in the dynamo. We investigate this mechanism by means of the asymptotic small Ekman number theory of rapidly rotating magnetoconvection, and compare our results with fully nonlinear dynamo simulations. There are also other mechanisms which can promote subcritical behaviour. When Reynolds stresses are significant, zonal flows can lower the helicity and disrupt the onset of dynamo action, but an established dipole field can suppress the zonal flow, and hence boost the helicity. Subcriticality means that a slow gradual reduction in Rayleigh number can lead to a catastrophic collapse of the dynamo once a critical Rayleigh number is reached. While there is little evidence that the Earth is currently in a subcritical regime, this may have implications for the long-term evolution of the geodynamo.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aubert, J. & Wicht, J. 2004 Axial and equatorial dipolar dynamo models with implications for planetary magnetic fields. Earth Planet Sci. Lett. 221, 409419.Google Scholar
2. Busse, F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441460.Google Scholar
3. Busse, F. H. 1976 Generation of planetary magnetism by convection. Phys. Earth Planet. Inter. 12, 350358.CrossRefGoogle Scholar
4. Busse, F. H. & Carrigan, C. R. 1976 Laboratory simulation of thermal convection in rotating planets and stars. Science 191, 8183.Google Scholar
5. Busse, F. H. & Simitev, R. D. 2006 Parameter dependences of convection-driven dynamos in rotating spherical fluid shells. Geophys. Astrophys. Fluid Dyn. 100, 341361.CrossRefGoogle Scholar
6. Cardin, P. & Schaeffer, N. 2006 Quasi-geostrophic kinematic dynamos at low magnetic Prandtl number. Earth Planet. Sci. Lett. 245, 595604.Google Scholar
7. Christensen, U. R. et al. 2001 A numerical dynamo benchmark. Phys. Earth Planet. Inter. 128, 2534.CrossRefGoogle Scholar
8. Christensen, U. R. & Wicht, J. 2007 Numerical dynamo simulations. In Treatise on Geophysics (volume editor P. Olson, series editor G. Schubert), vol. 8, pp. 245282. Elsevier.Google Scholar
9. Clune, T. C., Elliot, J. R., Miesch, M. S., Toomre, J. & Glatzmaier, G. A. 1999 Computational aspects of a code to study rotating turbulent convection in spherical shells. Parallel Comput. 25, 361380.Google Scholar
10. Dormy, E., Soward, A. M., Jones, C. A., Jault, D. & Cardin, P. 2004 The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 4370.CrossRefGoogle Scholar
11. Fautrelle, Y. & Childress, S. 1982 Convective dynamos with intermediate and strong fields. Geophys. Astrophys. Fluid Dyn. 22, 235279.Google Scholar
12. Gilbert, A. D., Frisch, U. & Pouquet, A. 1988 Helicity is unnecessary for alpha effect dynamos, but it helps. Geophys. Astrophys. Fluid Dyn. 42, 151161.Google Scholar
13. Jones, C. A. 2007 Thermal and compositional convection in the outer core. In Treatise on Geophysics (volume editor P. Olson, series editor G. Schubert), vol. 8, pp. 131185. Elsevier.Google Scholar
14. Jones, C. A., Mussa, A. I. & Worland, S. J. 2003 Magnetoconvection in a rapidly rotating sphere: the weak-field case. Proc. R. Soc. Lond. A 459, 773797.Google Scholar
15. Jones, C. A., Soward, A. M. & Mussa, A. I. 2000 The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech. 405, 157179.CrossRefGoogle Scholar
16. Kono, M. & Roberts, P. H. 2002 Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys. 40, 1013.Google Scholar
17. Kuang, W. & Bloxham, J. 1997 An Earth-like numerical dynamo model. Nature 389, 371374.Google Scholar
18. Kuang, W., Jiang, W. & Wang, T. 2008 Sudden termination of Martian dynamo?: implications from subcritical dynamo simulations. Geophys. Res. Lett. 35, L14204.Google Scholar
19. Lillis, R. J., Frey, H. V., Manga, M., Mitchell, D. L., Lin, R. P., Acuña, M. H. & Bougher, S. W. 2008 An improved crustal magnetic map of Mars from electron reflectometry: highland volcano magmatic history and the end of the Martian dynamo. Icarus 194, 575596.Google Scholar
20. Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids, p. 343. Cambridge University Press.Google Scholar
21. Morin, V. & Dormy, E. 2009 The dynamo bifurcation in rotating spherical shells. Intl J. Mod. Phys. B 23, 54675482.Google Scholar
22. Moss, D. & Brandenburg, A. 1995 The generation of nonaxisymmetric magnetic fields in the giant planets. Geophys. Astrophys. Fluid Dyn. 80, 229240.Google Scholar
23. Olson, P. & Christensen, U. R. 2006 Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett. 250, 561571.Google Scholar
24. Olson, P., Christensen, U. & Glatzmaier, G. A. 1999 Numerical modelling of the geodynamo: mechanisms of field generation and equilibration. J. Geophys. Res. 104, 1038310404.Google Scholar
25. Ott, E. 2002 Chaos in Dynamical Systems. Cambridge University Press.Google Scholar
26. Roberts, P. H. 1968 On the thermal instability of a rotating fluid sphere containing heat sources. Phil. Trans. R. Soc. Lond. A 263, 93117.Google Scholar
27. Roberts, G. O. 1970 Spatially periodic dynamos. Phil. Trans. R. Soc. Lond. A 266, 535558.Google Scholar
28. Roberts, P. H. 1972 Kinematic dynamo models. Phil. Trans. R. Soc. Lond. A 272, 663698.Google Scholar
29. Roberts, P. H. 1978 Magneto-convection in a rapidly rotating fluid. In Rotating Fluids in Geophysics (ed. Roberts, P. H. & Soward, A. M. ), pp. 421435. Academic.Google Scholar
30. Roberts, P. H. & Soward, A. M. 1992 Dynamo theory. Annu. Rev. Fluid Mech. 24, 459512.CrossRefGoogle Scholar
31. Simitev, R. D. & Busse, F. H. 2009 Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. Europhys. Lett. 85, Art. No. 19001.Google Scholar
32. Sreenivasan, B. & Jones, C. A. 2006a The role of inertia in the evolution of spherical dynamos. Geophys. J. Intl 164, 467476.Google Scholar
33. Sreenivasan, B. & Jones, C. A. 2006b Azimuthal winds, convection and dynamo action in the polar regions of planetary cores. Geophys. Astrophys. Fluid Dyn. 100, 319339.CrossRefGoogle Scholar
34. Sreenivasan, B. 2009 On dynamo action produced by boundary thermal coupling. Phys. Earth Planet. Inter. 177, 130138.Google Scholar
35. Stewartson, K. 1966 On almost rigid rotations. J. Fluid Mech. 26, 131144.Google Scholar
36. Tilgner, A. 2004 Small-scale kinematic dynamos: beyond the α-effect. Geophys. Astrophys. Fluid Dyn. 98, 225234.Google Scholar
37. Tilgner, A. & Busse, F. H. 1997 Finite-amplitude convection in rotating fluid shells. J. Fluid Mech. 332, 359376.Google Scholar
38. Zeldovich, Y. B. 1957 The magnetic field in the two-dimensional motion of a conducting turbulent fluid. Sov. Phys. JETP 4, 460462.Google Scholar
39. Zhang, K. 1992 Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech. 236, 535556.Google Scholar
40. Zhang, K. & Gubbins, D. 1999 Scale disparities and magnetohydrodynamics in the Earth’s core. Phil. Trans R. Soc. Lond. A 358, 899920.Google Scholar