Hostname: page-component-6bb9c88b65-znhjv Total loading time: 0 Render date: 2025-07-20T19:52:15.981Z Has data issue: false hasContentIssue false

How large-scale flow structures affect particle transport in wall turbulence

Published online by Cambridge University Press:  16 July 2025

Jianda Huang
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Yucheng Jie
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Zhiwen Cui
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
Chunxiao Xu
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Helge I. Andersson
Affiliation:
Department of Marine Technology, Norwegian University of Science and Technology, Trondheim 7491, Norway
Lihao Zhao*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China State Key Laboratory of Advanced Space Propulsion, Tsinghua University, Beijing 100084, PR China
*
Corresponding author: Lihao Zhao, zhaolihao@tsinghua.edu.cn

Abstract

This study investigates the transport of particles in turbulent channel flow with friction Reynolds number $Re_\tau = 1000$ by direct numerical simulation. We focus on how large-scale flow structures, namely the $Qs$ structures (Lozano-Durán et al. 2012, J. Fluid Mech., vol. 694, pp. 100–130), affect the wall-normal transport of particles. Despite occupying less than $10\,\%$ of the physical domain, our results highlight the critical role played by $Qs$ structures in the particle transport, namely that the particle number and momentum flux inside the $Qs$ structures are substantially higher than outside. The fraction of particle wall-normal momentum flux inside $Qs$ structures is considerably larger than their volume fraction, suggesting highly efficient transport inside the $Qs$ structures. This prominent role played by $Qs$ structures in the transport of inertial particles is more effective by diminishing the inertia of particles. Notably, the long-distance transport of particles in the wall-normal direction is driven primarily by the continuous effect of $Qs$ structures. In summary, our findings advance the understanding of the effects of $Qs$ structures on particle transport, and demonstrate their significant role in the process.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Jianda Huang and Yucheng Jie contributed equally to this work.

References

Baker, L., Frankel, A., Mani, A. & Coletti, F. 2017 Coherent clusters of inertial particles in homogeneous turbulence. J. Fluid Mech. 833, 364398.10.1017/jfm.2017.700CrossRefGoogle Scholar
Berk, T. & Coletti, F. 2020 Transport of inertial particles in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 903, A18.10.1017/jfm.2020.597CrossRefGoogle Scholar
Bernardini, M. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.10.1017/jfm.2014.561CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2013 The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows. Intl J. Multiphase Flow 51, 5564.10.1016/j.ijmultiphaseflow.2012.11.007CrossRefGoogle Scholar
Bo, T.L. 2021 The effect of turbulent motions on the transport of dust and heat in the development stage of dust storms induced by cold front. J. Wind Engng Indust. Aerodyn. 212, 104604.10.1016/j.jweia.2021.104604CrossRefGoogle Scholar
Bragg, A.D., Richter, D.H. & Wang, G. 2021 Settling strongly modifies particle concentrations in wall-bounded turbulent flows even when the settling parameter is asymptotically small. Phys. Rev. Fluids 6 (12), 124301.10.1103/PhysRevFluids.6.124301CrossRefGoogle Scholar
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32 (3), 565568.10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2020 Interface-resolved simulations of small inertial particles in turbulent channel flow. J. Fluid Mech. 883, A54.10.1017/jfm.2019.918CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.10.1016/0301-9322(94)90072-8CrossRefGoogle Scholar
Fessler, J.R., Kulick, J.D. & Eaton, J.K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.10.1063/1.868445CrossRefGoogle Scholar
Gao, W., Samtaney, R. & Richter, D. 2023 Direct numerical simulation of particle-laden flow in an open channel at Re τ = 5186. J. Fluid Mech. 957, A3.10.1017/jfm.2023.26CrossRefGoogle Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47 (1), 137162.10.1146/annurev-fluid-010313-141322CrossRefGoogle Scholar
Jie, Y., Andersson, H.I. & Zhao, L. 2021 Effects of the quiescent core in turbulent channel flow on transport and clustering of inertial particles. Intl J. Multiphase Flow 140, 103627.10.1016/j.ijmultiphaseflow.2021.103627CrossRefGoogle Scholar
Jie, Y., Cui, Z., Xu, C. & Zhao, L. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.10.1017/jfm.2022.8CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.10.1017/jfm.2018.144CrossRefGoogle Scholar
Liu, L., Li, X., Tian, X., Zhang, X., Xu, L. & Zhang, X. 2023 Numerical investigation on inclined hydraulic transport of large particles for deepsea mining. China Ocean Engng 37 (3), 420432.10.1007/s13344-023-0035-1CrossRefGoogle Scholar
Liu, Y., Shen, L., Zamansky, R. & Coletti, F. 2020 Life and death of inertial particle clusters in turbulence. J. Fluid Mech. 902, R1.10.1017/jfm.2020.710CrossRefGoogle Scholar
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.10.1017/jfm.2011.524CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.10.1017/jfm.2014.575CrossRefGoogle Scholar
Lu, H., Wang, B., Zhang, H. & Wang, X. 2013 Transports of air particulate matters in the atmospheric boundary layer – numerical studies using Eulerian and Lagrangian methods. Sci. China Phys. Mech. Astron. 56 (3), 645650.10.1007/s11433-013-5012-xCrossRefGoogle Scholar
Lu, S.S. & Willmarth, W.W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60 (3), 481511.10.1017/S0022112073000315CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.10.1017/S0022112002001738CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31 (3), 418428.10.1016/j.ijheatfluidflow.2010.01.005CrossRefGoogle Scholar
Milici, B., Marchis, M.D., Sardina, G. & Napoli, E. 2014 Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis. J. Fluid Mech. 739, 465478.10.1017/jfm.2013.633CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a VoronoÏ analysis. Phys. Fluids 22 (10), 103304.10.1063/1.3489987CrossRefGoogle Scholar
Motoori, Y., Wong, C. & Goto, S. 2022 Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. J. Fluid Mech. 942, A3.10.1017/jfm.2022.327CrossRefGoogle Scholar
Nilsen, C., Andersson, H.I. & Zhao, L. 2013 A VoronoÏ analysis of preferential concentration in a vertical channel flow. Phys. Fluids 25 (11), 115108.10.1063/1.4830435CrossRefGoogle Scholar
Picano, F., Sardina, G. & Casciola, C.M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9), 093305.10.1063/1.3241992CrossRefGoogle Scholar
Reeks, M.W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14 (6), 729739.10.1016/0021-8502(83)90055-1CrossRefGoogle Scholar
Sardina, G., Picano, F., Schlatter, P., Brandt, L. & Casciola, C.M. 2011 Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow. Flow Turbul. Combust. 86 (3), 519532.10.1007/s10494-010-9322-zCrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C.M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.10.1017/jfm.2012.65CrossRefGoogle Scholar
Scherer, M., Uhlmann, M., Kidanemariam, A.G. & Krayer, M. 2022 On the role of turbulent large-scale streaks in generating sediment ridges. J. Fluid Mech. 930, A11.10.1017/jfm.2021.891CrossRefGoogle Scholar
Schiller, L. & Naumann, A.Z. 1933 Ueber die grundlegenden Berechnungen bei der Schwer- kraftaufbereitung. Ver. Deut. Ing. 77, 318320.Google Scholar
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Intl J. Multiphase Flow 35 (9), 827839.10.1016/j.ijmultiphaseflow.2009.02.016CrossRefGoogle Scholar
Wallace, J.M., Eckelmann, H. & Brodkey, R.S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54 (1), 3948.10.1017/S0022112072000515CrossRefGoogle Scholar
Wang, G. & Richter, D. 2020 Multiscale interaction of inertial particles with turbulent motions in open channel flow. Phys. Rev. Fluids 5 (4), 044307.10.1103/PhysRevFluids.5.044307CrossRefGoogle Scholar
Wei, Q., Wang, P. & Zheng, X. 2024 Modulations of turbulent/non-turbulent interfaces by particles in turbulent boundary layers. J. Fluid Mech. 983, A15.10.1017/jfm.2024.82CrossRefGoogle Scholar
Willmarth, W.W. & Lu, S.S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55 (1), 6592.10.1017/S002211207200165XCrossRefGoogle Scholar
Xiao, S., Cui, Y., Brahney, J., Mahowald, N.M. & Li, Q. 2023 Long-distance atmospheric transport of microplastic fibres influenced by their shapes. Nat. Geosci. 16 (10), 863870.10.1038/s41561-023-01264-6CrossRefGoogle Scholar
Yuan, W., Zhao, L., Andersson, H.I. & Deng, J. 2018 Three-dimensional Voronoї analysis of preferential concentration of spheroidal particles in wall turbulence. Phys. Fluids 30 (6), 063304.10.1063/1.5031117CrossRefGoogle Scholar
Zhao, L. & Andersson, H.I. 2012 Statistics of particle suspensions in turbulent channel flow. Commun. Comput. Phys. 11 (4), 13111322.10.4208/cicp.080510.150511sCrossRefGoogle Scholar