Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T23:59:38.159Z Has data issue: false hasContentIssue false

The hydrodynamics of water-walking arthropods

Published online by Cambridge University Press:  11 February 2010

DAVID L. HU
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
JOHN W. M. BUSH*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: bush@math.mit.edu

Abstract

We present the results of a combined experimental and theoretical investigation of the dynamics of water-walking insects and spiders. Using high-speed videography, we describe their numerous gaits, some analogous to those of their terrestrial counterparts, others specialized for life at the interface. The critical role of the rough surface of these water walkers in both floatation and propulsion is demonstrated. Their waxy, hairy surface ensures that their legs remain in a water-repellent state, that the bulk of their leg is not wetted, but rather contact with the water arises exclusively through individual hairs. Maintaining this water-repellent state requires that the speed of their driving legs does not exceed a critical wetting speed. Flow visualization reveals that the wakes of most water walkers are characterized by a series of coherent subsurface vortices shed by the driving stroke. A theoretical framework is developed in order to describe the propulsion in terms of the transfer of forces and momentum between the creature and its environment. The application of the conservation of momentum to biolocomotion at the interface confirms that the propulsion of water walkers may be rationalized in terms of the subsurface flows generated by their driving stroke. The two principal modes of propulsion available to small water walkers are elucidated. At driving leg speeds in excess of the capillary wave speed, macroscopic curvature forces are generated by deforming the meniscus, and the surface behaves effectively as a trampoline. For slower speeds, the driving legs need not substantially deform the surface but may instead simply brush it: the resulting contact or viscous forces acting on the leg hairs crossing the interface serve to propel the creature forward.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Departments of Mechanical Engineering and Biology, Georgia Institute of Technology, Atlanta, GA 30318, USA

References

REFERENCES

Aldrovandi, U. 1618 Historiam naturalem de Animalibus Insectis Libri Septem. Typis Pauli Jacobi.CrossRefGoogle Scholar
Alexander, R. M. 2003 Principles of Animal Locomotion. Princeton University Press.Google Scholar
Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown, H. B. Jr., McMordie, D., Saranli, U., Full, R. & Koditschek, D. E. 2001 RHex: a biologically inspired hexapod runner. J. Auton. Robots 11, 207213.CrossRefGoogle Scholar
Andersen, N. M. 1976 A comparative study of locomotion on the water surface in semiaquatic bugs (insects, Hemiptera, Gerromorpha). Vidensk. Meddr. Dansk. Naturh. Foren. 139, 337396.Google Scholar
Andersen, N. M. 1977 Fine structure of the body hair layers and morphology of the spiracles of semiaquatic bugs in relation to life on the water surface. Vidensk. Meddr. Dansk. Naturh. Foren. 140, 737.Google Scholar
Bartolo, D., Bouamrirene, F., Verneuil, E., Beguin, A., Silberzan, P. & Moulinet, S. 2006 Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74, 299305.Google Scholar
Baudoin, R. 1955 La physico-chimie des surfaces dans la vie des Arthropodes aeriens des miroirs d'eau, des rivages marins et lacustres et de la zone intercotidale. Bull. Biol. Fr. Belg. 89, 16164.Google Scholar
Bowdan, E. 1978 Walking and rowing in the water strider, Gerris remigis. J. Compar. Physiol. 123, 4349.CrossRefGoogle Scholar
Brocher, F. 1910 Les phénomènes capillaires, leur importance dans la biologie aquatique. Ann. Biol. Lacustre 4, 89139.Google Scholar
Bühler, O. 2007 Impulsive fluid forcing and water strider locomotion. J. Fluid. Mech. 573, 211236.Google Scholar
Bush, J. W. M. & Hu, D. L. 2004 Walking on water. In Multimedia Fluid Mechanics CD (ed. Homsy, G. M.). Cambridge University Press.Google Scholar
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.Google Scholar
Bush, J. W. M., Hu, D. L. & Prakash, M. 2008 The integument of water-walking arthropods: form and function. Adv. Insect Physiol. 34, 117192.CrossRefGoogle Scholar
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.Google Scholar
Chepelianskii, A. D., Chevy, F. & Raphäel, E. 2008 On capillary–gravity waves generated by a slowly moving object. Phys. Rev. Lett. p. 074504.CrossRefGoogle Scholar
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.Google Scholar
Dabiri, J. O. 2005 On the estimation of swimming and flying forces from wake measurements. J. Exp. Biol. 208, 35193532.CrossRefGoogle ScholarPubMed
Darnhofer-Demar, B. 1969 Zur fortbewegung des wasserläufers Gerris lacustris L. auf des wasseroberfläche. Zool. Anz. Suppl. 32, 430439.Google Scholar
Denny, M. W. 1993 Air and Water: The Biology and Physics of Life's Media. Princeton University Press.CrossRefGoogle Scholar
Denny, M. W. 2004 Paradox lost: answers and questions about walking on water. J. Exp. Biol. 207, 16011606.CrossRefGoogle ScholarPubMed
Dias, F. & Kharif, C. 1999 Numerical study of capillary-gravity solitary waves. Annu. Rev. Fluid Mech. 31, 301346.CrossRefGoogle Scholar
Dias, F., Menasce, D. & Vanden-Broeck, J. M. 1996 Numerical study of capillary-gravity solitary waves. Eur. J. Mech. B 15, 1736.Google Scholar
Dickinson, M. H. 2003 Animal locomotion: how to walk on water. Nature 424, 621622.Google Scholar
Dufour, L. 1833 Recherches Anatomiques et Physiologiques sur les Hémiptères, Accompagnées de Considèrations Relatives à l'Histoire Naturelle et à la Classification de ces Insectes, pp. 68–74. Impr. de Bachelier, extrait des Mémoires des savants étrangers, tome IV.CrossRefGoogle Scholar
Dussan, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech 11, 371400.CrossRefGoogle Scholar
Dussan, E. B. & Chow, R. T. 1983 On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J. Fluid Mech. 137, 129.CrossRefGoogle Scholar
Floyd, S., Keegan, T., Palmisano, J. & Sitti, M. 2006 A novel water running robot inspired by basilisk lizards. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5430–5436.Google Scholar
Flynn, M. R. & Bush, J. W. M. 2008 Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608, 275296.Google Scholar
Gao, X. & Jiang, L. 2004 Water-repellent legs of water striders. Nature 432, 36.Google Scholar
de Gennes, P. G., Brochard-Wyart, F. & Quéré, D. 2003 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls and Waves. Springer.Google Scholar
Glasheen, J. W. & McMahon, T. A. 1996 a A hydrodynamic model of locomotion in the Basilisk lizard. Nature 380, 340342.Google Scholar
Glasheen, J. W. & McMahon, T. A. 1996 b Size dependence of water-running ability in Basilisk lizards Basiliscus basiliscus. J. Exp. Biol. 199, 26112618.Google Scholar
Hinton, H. E. 1976 Plastron respiration in bugs and beetles. J. Insect Physiol. 22, 15291550.Google Scholar
Holdgate, M. W. 1955 The wetting of insect cuticle by water. J. Exp. Biol. pp. 591–617.Google Scholar
Hsieh, T. S. 2003 Three-dimensional hindlimb kinematics of water running in the plumed basilisk lizard (Basiliscus plumifrons). J. Exp. Biol. 206, 43634377.CrossRefGoogle ScholarPubMed
Hsieh, T. S. 2004 Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl Acad. Sci. 101, 1678416788.Google Scholar
Hu, D. L. & Bush, J. W. M. 2005 Meniscus-climbing insects. Nature 437, 733736.Google Scholar
Hu, D. L., Chan, B. & Bush, J. W. M. 2003 The hydrodynamics of water strider locomotion. Nature 424, 663666.Google Scholar
Hu, D. L., Prakash, M., Chan, B. & Bush, J. W. M. 2007 Water-walking devices. Exp. Fluids 43, 769778.CrossRefGoogle Scholar
Janssens, F. 2005 Checklist of the Collembola of the world: note on the morphology and origin of the foot of the Collembola. http://www.Collembola.org/publicat/unguis.htm.Google Scholar
Keller, J. B. 1998 Surface tension force on a partly submerged body. Phys. Fluids 10, 30093010.Google Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Linsenmair, K. E. & Jander, R. 1976 Das ‘entspannungsschwimmen’ von Velia and Stenus. Naturwissenschaften 50, 231.Google Scholar
Mansfield, E. H., Sepangi, H. R. & Eastwood, E. A. 1997 Equilibrium and mutual attraction or repulsion of objects supported by surface tension. Philos. Trans. R. Soc. Lond. A 355, 869919.Google Scholar
Matsuda, K., Watanabe, S. & Eiju, T. 1985 Real-time measurement of large liquid surface deformation using a holographic shearing interferometer. Appl. Opt. 24 (24), 44434447.Google Scholar
Milewski, P. A. & Vanden-Broeck, J. M. 1999 Time-dependent gravity-capillary flows past an obstacle. Wave Mot. 29, 6379.Google Scholar
Miyamoto, S. 1955 On a special mode of locomotion utilizing surface tension at the water-edge in some semiaquatic insects. Kontyû 23, 4552.Google Scholar
Noble-Nesbitt, J. 1963 Transpiration in Podura aquatica L. (Collembola, Isotomidae) and the wetting properties of its cuticle. J. Exp. Biol. 40, 681700.CrossRefGoogle Scholar
Plateau, J. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier-Villars.Google Scholar
Prakash, M. & Bush, J. W. M. Interfacial propulsion by directional adhesion. Nat. Materials (submitted).Google Scholar
Quéré, D. 2008 Wetting and Roughness. Annu. Rev. Mater. Res. 38, 7199.CrossRefGoogle Scholar
Ray, J. 1710 Historia insectorum. Impensis A. & J. Churchill.Google Scholar
Reyssat, M., Pépin, A., Marty, F., Chen, Y. & Quéré, D. 2006 Bouncing transitions in microtextured materials. Europhys. Lett. 74, 306312.Google Scholar
Schildknecht, H. 1976 Chemical ecology - a chapter of modern natural products chemistry. Angew. Chem. Intl Ed. Engl. 15, 214222.CrossRefGoogle Scholar
Scriven, L. E. & Sternling, C. V. 1970 The Marangoni effects. Nature 187, 186188.Google Scholar
Song, Y. S., Suhr, S. H. & Sitti, M. 2006 Modeling of the supporting legs for designing a biomimetic water strider robot. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2303–2310.Google Scholar
Spedding, G. R., Rosén, M. & Hedenstrom, A. 2003 A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 206, 23132344.Google Scholar
Spilhaus, A. 1948 Raindrop size, shape and falling speed. J. Atmos. Sci. 5 (3), 108110.Google Scholar
Stratton, G. E., Suter, R. B. & Miller, P. R. 2004 a Evolution of water surface locomotion by spiders: a comparative approach. Biol. J. Linn. Soc. 81 (1), 6378.Google Scholar
Stratton, G. E., Suter, R. B. & Miller, P. R. 2004 b Taxonomic variation among spiders in the ability to repel water: surface adhesion and hair density. J. Arachnol. 32, 1121.Google Scholar
Suhr, S. H., Song, Y. S., Lee, S. J. & Sitti, M. 2005 Biologically inspired miniature water strider robot. Proc. Robot. Sci. Sys. pp. 42–48.Google Scholar
Sun, S. M. & Keller, J. B. 2001 Capillary–gravity wave drag. Phys. Fluids 13 (8), 21462151.Google Scholar
Suter, R. B. 2003 Trichobothrial mediation of an aquatic escape response: directional jumps by the fishing spider. J. Insect Sci. 3, 17.Google Scholar
Suter, R. B. & Gruenwald, J. 2000 Predator avoidance on the water surface? Kinematics and efficacy of vertical jumping by Dolomedes (Araneae, Pisauridae). J. Arachnol. 28 (2), 201210.CrossRefGoogle Scholar
Suter, R. B., Rosenberg, R. B., Loeb, S., Wildman, H. & Long, J. 1997 Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton. J. Exp. Biol. 200, 25232538.Google Scholar
Suter, R. B., Stratton, G. & Miller, P. 2003 Water surface locomotion by spiders: distinct gaits in diverse families. J. Arachnol. 31 (3), 428432.Google Scholar
Suter, R. B. & Wildman, H. 1999 Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change. J. Exp. Biol. 202, 27712785.CrossRefGoogle ScholarPubMed
Taneda, S. 1991 Visual observations of the flow around a half-submerged oscillating sphere. J. Fluid. Mech. 227, 193209.Google Scholar
Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707711.Google Scholar
Thorpe, W. H. & Crisp, D. J. 1947 Studies on plastron respiration. Part I. The biology of Apelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] and the mechanism of plastron rentention. J. Exp. Biol. 24, 227269.CrossRefGoogle Scholar
Vanden-Broeck, J. & Dias, F. 1992 Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549557.Google Scholar
Vogel, S. 1994 Life in Moving Fluids. Princeton University Press.Google Scholar
Vogel, S. 2006 Living in a physical world. Part VIII. Gravity and life in water. J. Biosci. 30 (3), 309322.CrossRefGoogle Scholar
Voropayev, S. I. & Afanasyev, Y. D. 1994 Vortex Structures in a Stratified Fluid, pp. 35–37. Chapman & Hall.Google Scholar
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Indus. Engng Chem. 28, 988994.Google Scholar
Wilga, C. & Lauder, G. 2002 Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. J. Exp. Biol. 205, 23652374.CrossRefGoogle ScholarPubMed
Yu, Y., Guo, M., Li, X. & Zheng, Q. S. 2007 Meniscus-climbing behaviour and its minimum free-energy mechanism. Langmuir 23, 1054610550.Google Scholar