Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T19:44:48.178Z Has data issue: false hasContentIssue false

Hydrothermal waves on ethanol droplets evaporating under terrestrial and reduced gravity levels

Published online by Cambridge University Press:  05 November 2012

F. Carle*
Affiliation:
Laboratoire IUSTI, UMR 7343 CNRS, Aix Marseille Université, 13013 Marseille, France
B. Sobac
Affiliation:
Laboratoire IUSTI, UMR 7343 CNRS, Aix Marseille Université, 13013 Marseille, France
D. Brutin
Affiliation:
Laboratoire IUSTI, UMR 7343 CNRS, Aix Marseille Université, 13013 Marseille, France
*
Email address for correspondence: florian.carle@polytech.univ-mrs.fr

Abstract

This experimental study, performed under microgravity conditions, focuses on the evaporation dynamics of ethanol drops and the formation and behaviour of the hydrothermal waves that spontaneously develop on the drop surfaces. The aim of this study is to compare our results to a similar study performed under normal gravity conditions to confirm the purely thermocapillary origin of these instabilities. A scaling law predicts with good agreement the number of instabilities that form, regardless of the gravity level.

Type
Papers
Copyright
©2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénard, H. 1900 Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. des Sci. Pures et Appl. 4, 254266.Google Scholar
Brutin, D., Sobac, B., Rigollet, F. & Le Niliot, C. 2011 Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface. Exp. Therm. Fluid Sci. 35 (3), 521530.Google Scholar
Brutin, D., Zhu, Z. Q., Rahli, O., Xie, J. C., Liu, Q. S. & Tadrist, L. 2010 Evaporation of ethanol drops on a heated substrate under microgravity conditions. Microgravity Sci. Technol. 22, 387395.Google Scholar
Chan, C. L. & Chen, C. F. 2010 Effect of gravity on the stability of thermocapillary convection in a horizontal fluid layer. J. Fluid Mech. 647, 91103.CrossRefGoogle Scholar
David, S., Sefiane, K. & Tadrist, L. 2007 Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloid Surf. A 298, 108114.Google Scholar
Garnier, N. & Chiffaudel, A. 2001 Two-dimensional hydrothermal waves in an extended cylindrical vessel. Eur. Phys. J. B 19, 8795.Google Scholar
Garnier, N., Chiffaudel, A. & Daviaud, F. 2006 Hydrothermal waves in a disk of fluid. In Dynamics of Spatio-Temporal Cellular Structures: Henri Bénard Centenary Review (ed. Mutabazi, I., Wesfreid, J. E. & Guyon, E.), vol. 207, Chap. 8, pp. 147161. Springer.CrossRefGoogle Scholar
Hu, H. & Larson, R. G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.CrossRefGoogle Scholar
Kamotani, Y., Ostrach, S. & Masud, J. 2000 Microgravity experiments and analysis of oscillatory thermocapillary flows in cylindrical containers. J. Fluid Mech. 410, 211233.Google Scholar
Pearson, J. R. A. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4, 489500.Google Scholar
Riley, R. J. & Neitzel, G. P. 1998 Instability of thermocapillary buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. J. Fluid Mech. 359, 143164.CrossRefGoogle Scholar
Schwabe, D., Zebib, A. & Sim, B. C. 2003 Oscillatory thermocapillary convection in open cylindrical annuli. Part 1. Experiments under microgravity. J. Fluid Mech. 491, 239258.CrossRefGoogle Scholar
Sefiane, K., Steinchen, A. & Moffat, R. 2010 On hydrothermal waves observed during evaporation of sessile droplets. Colloids Surf. A 365 (1–3), 95108.CrossRefGoogle Scholar
Smith, M. K. 1986 Instability mechanisms in dynamic thermocapillary liquid layers. Phys. Fluids 29, 3182.CrossRefGoogle Scholar
Smith, M. K. & Davis, S. H. 1983 Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface-wave instabilities. J. Fluid Mech. 132, 119144.CrossRefGoogle Scholar
Sobac, B. & Brutin, D. 2011 Triple-line behavior and wettability controlled by nano-coated substrates: influence on sessile drop evaporation. Langmuir 27, 1499915007.Google Scholar
Sobac, B. & Brutin, D. 2012 Thermocapillary instabilities in an evaporating drop deposited onto a heated substrate. Phys. Fluids 24 (3), 032103, 1–16.Google Scholar

Carle et al supplementary movie

Infrared visualisation of an ethanol drop under reduced gravity [TS = 35°C, P = 835 mbar, Rμg = 2.77 mm]

Download Carle et al supplementary movie(Video)
Video 9.1 MB