Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T21:15:09.308Z Has data issue: false hasContentIssue false

Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets

Published online by Cambridge University Press:  04 November 2010

C. BOGEY*
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, 69134 Ecully CEDEX, France
C. BAILLY
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, 69134 Ecully CEDEX, France Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
*
Email address for correspondence: christophe.bogey@ec-lyon.fr

Abstract

Round jets originating from a pipe nozzle are computed by large-eddy simulations (LES) to investigate the effects of the nozzle-exit conditions on the flow and sound fields of initially laminar jets. The jets are at Mach number 0.9 and Reynolds number 105, and exhibit exit boundary layers characterized by Blasius velocity profiles, maximum root-mean-square (r.m.s.) axial velocity fluctuations between 0.2 and 1.9% of the jet velocity, and momentum thicknesses varying from 0.003 to 0.023 times the jet radius. The far-field noise is determined from the LES data on a cylindrical surface by solving the acoustic equations. Jets with a thinner boundary layer develop earlier but at a slower rate, yielding longer potential cores and lower centreline turbulent intensities. Adding random pressure disturbances of low magnitude in the nozzle also increases the potential core length and reduces peak r.m.s. radial velocity fluctuations in the shear layer. In all the jets, the shear-layer transition is dominated by vortex rolling-ups and pairings, which generate strong additional acoustic components, but also amplify the downstream-dominant low-frequency noise component when the exit boundary layer is thick. The introduction of inlet noise however results in weaker pairings, thus spectacularly reducing their contributions to the sound field. This high sensitivity to the initial conditions is in good agreement with experimental observations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahuja, K. K., Tester, B. J. & Tanna, H. K. 1987 Calculation of far field jet noise spectra from near field measurements with true source location. J. Sound Vib. 116 (3), 415426.CrossRefGoogle Scholar
Alkislar, M. B., Krothapalli, A. & Butler, G. W. 2007 The effect of streamwise vortices on the aeroacoustics of a Mach 0.9. J. Fluid Mech. 578, 139169.CrossRefGoogle Scholar
Arakeri, V. H., Krothapalli, A., Siddavaram, V., Alkislar, M. B. & Lourenco, L. 2003 On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech. 490, 7598.CrossRefGoogle Scholar
Berland, J., Bogey, C. & Bailly, C. 2007 a Numerical study of screech generation in a planar supersonic jet. Phys. Fluids 19, 075105.CrossRefGoogle Scholar
Berland, J., Bogey, C., Marsden, O. & Bailly, C. 2007 b High-order, low dispersive and low dissipative explicit schemes for multi-scale and boundary problems. J. Comput. Phys. 224 (2), 637662.CrossRefGoogle Scholar
Bodony, D. J. & Lele, S. K. 2008 On the current status of jet noise predictions using large-eddy simulation. AIAA J. 46 (2), 364380.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2002 Three-dimensional non-reflective boundary conditions for acoustic simulations: far-field formulation and validation test cases. Acta Acust. 88 (4), 463471.Google Scholar
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2005 Effects of inflow conditions and forcing on a Mach 0.9 jet and its radiated noise. AIAA J. 43 (5), 10001007.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2006 a Investigation of downstream and sideline subsonic jet noise using large-eddy simulations. Theoret. Comput. Fluid Dyn. 20 (1), 2340.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2006 b Large-eddy simulations of round jets using explicit filtering with/without dynamic Smagorinsky model. Intl J. Heat Fluid Flow 27 (4), 603610.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2006 c Large-eddy simulations of transitional round jets: influence of the Reynolds number on flow development and energy dissipation. Phys. Fluids 18 (6), 065101.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2007 An analysis of the correlations between the turbulent flow and the sound pressure field of subsonic jets. J. Fluid Mech. 583, 7197.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2009 Turbulence and energy budget in a self-preserving round jet: direct evaluation using large-eddy simulation. J. Fluid Mech. 627, 129160.CrossRefGoogle Scholar
Bogey, C., Barré, S. & Bailly, C. 2008 Direct computation of the noise generated by subsonic jets originating from a straight pipe nozzle. Intl J. Aeroacoust. 7 (1), 122.CrossRefGoogle Scholar
Bogey, C., Barré, S., Fleury, V., Bailly, C. & Juvé, D. 2007 Experimental study of the spectral properties of near-field and far-field jet noise. Intl J. Aeroacoust. 6 (2), 7392.CrossRefGoogle Scholar
Bogey, C., Barré, S., Juvé, D. & Bailly, C. 2009 a Simulation of a hot coaxial jet: direct noise prediction and flow-acoustics correlations. Phys. Fluids 21 (3), 035105.CrossRefGoogle Scholar
Bogey, C., de Cacqueray, N. & Bailly, C. 2009 b A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228 (5), 14471465.CrossRefGoogle Scholar
Bridges, J. E. & Hussain, A. K. M. F. 1987 Roles of initial conditions and vortex pairing in jet noise. J. Sound Vib. 117 (2), 289311.CrossRefGoogle Scholar
Callender, B., Gutmark, E. & Martens, S. 2005 Far-field acoustic investigation into chevron nozzle mechanisms and trends. AIAA J. 43 (1), 8795.CrossRefGoogle Scholar
Castelain, T., Sunyach, M., Juvé, D. & Béra, J.-C. 2008 Jet-noise reduction by impinging microjets: an acoustic investigation testing microjet parameters. AIAA J. 46 (5), 10811087.CrossRefGoogle Scholar
Cohen, J. & Wygnanski, I. 1987 The evolution of instabilities in the axisymmetric jet. Part 1: The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191219.CrossRefGoogle Scholar
Colonius, T. & Lele, S. K. 2004 Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40, 345416.CrossRefGoogle Scholar
Crighton, D. G. 1981 Acoustics as a branch of fluid mechanics. J. Fluid Mech. 106, 261298.CrossRefGoogle Scholar
Fleury, V., Bailly, C., Jondeau, E., Michard, M. & Juvé, D. 2008 Space–time correlations in two subsonic jets using dual-PIV measurements. AIAA J. 46 (10), 24982509.CrossRefGoogle Scholar
Grosche, F.-R. 1974 Distributions of sound source intensities in subsonic and supersonic jets. AGARD-CP-131, 4-1 to 4-10. AGARD.Google Scholar
Hill, W. G., Jenkins, R. C. & Gilbert, B. L. 1976 Effects of the initial boundary-layer state on turbulent jet mixing. AIAA J. 14 (11), 15131514.CrossRefGoogle Scholar
Husain, Z. D. & Hussain, A. K. M. F. 1979 Axisymmetric mixing layer: influence of the initial and boundary conditions. AIAA J. 17 (1), 4855.CrossRefGoogle Scholar
Hussain, A. K. M. F & Zedan, M. F. 1978 a Effects of the initial condition on the axisymmetric free shear layer: effects of the initial momentum thickness. Phys. Fluids 21 (7), 11001112.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Zedan, M. F. 1978 b Effects of the initial condition on the axisymmetric free shear layer: effects of the initial fluctuation level. Phys. Fluids 21 (9), 14751481.CrossRefGoogle Scholar
Juvé, D. & Sunyach, M. 1978 Structure azimutale du champ acoustique lointain d'un jet subsonique. C. R. Acad. Sci. Paris 287 (B), 187190.Google Scholar
Kearney-Fischer, M., Kim, J.-H. & Samimy, M. 2009 Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators. Phys. Fluids 21 (9), 095101.CrossRefGoogle Scholar
Kim, J. & Choi, H. 2009 Large eddy simulation of a circular jet: effect of inflow conditions on the near field. J. Fluid Mech. 620, 383411.CrossRefGoogle Scholar
Lau, J. C., Morris, P. J. & Fisher, M. J. 1979 Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. 93 (1), 127.CrossRefGoogle Scholar
Lepicovsky, J. & Brown, W. H. 1989 Effects of nozzle exit boundary-layer conditions on excitability of heated free jets. AIAA J. 27 (6), 712718.CrossRefGoogle Scholar
Lush, P. A. 1971 Measurements of subsonic jet noise and comparison with theory. J. Fluid Mech. 46 (3), 477500.CrossRefGoogle Scholar
Maestrello, L. 1976 Two points correlations of sound pressure in the far field of a jet: experiment. Tech. Memorandum 72835. NASA-Langley Research Center.CrossRefGoogle Scholar
Maestrello, L. & McDaid, E. 1971 Acoustic characteristics of a high-subsonic jet. AIAA J. 9 (6), 10581066.CrossRefGoogle Scholar
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.CrossRefGoogle Scholar
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157 (2), 787795.CrossRefGoogle Scholar
Mollo-Christensen, E., Kolpin, M. A. & Martucelli, J. R. 1964 Experiments on jet flows and jet noise far-field spectra and directivity patterns. J. Fluid Mech. 18, 285301.CrossRefGoogle Scholar
Morris, P. J. & Zaman, K. B. M. Q. 2009 Velocity measurements in jets with application to noise source modelling. J. Sound Vib. 329 (4), 394414.CrossRefGoogle Scholar
Raman, G., Rice, E. J. & Reshotko, E. 1994 Mode spectra of natural disturbances in a circular jet and the effect of acoustic forcing. Exp. Fluids 17, 415426.CrossRefGoogle Scholar
Raman, G., Zaman, K. B. M. Q. & Rice, E. J. 1989 Initial turbulence effect on jet evolution with and without tonal excitation. Phys. Fluids A 1 (7), 12401248.CrossRefGoogle Scholar
Russ, S. & Strykowski, P. J. 1993 Turbulent structure and entrainment in heated jets: the effect of initial conditions. Phys. Fluids A 5 (12), 32163225.CrossRefGoogle Scholar
Saiyed, N. H., Mikkelsen, K. L. & Bridges, J. E. 2003 Acoustics and thrust of quiet separate-flow high-bypass-ratio nozzles. AIAA J. 41 (3), 372378.CrossRefGoogle Scholar
Stanley, S. A. & Sarkar, S. 2000 Influence of nozzle conditions and discrete forcing on turbulent planar jets. AIAA J. 38 (9), 16151623.CrossRefGoogle Scholar
Suzuki, T. & Colonius, T. 2007 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.CrossRefGoogle Scholar
Tam, C. K. W. & Dong, Z. 1996 Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow. J. Comput. Acoust. 4 (2), 175201.CrossRefGoogle Scholar
Tam, C. K. W., Viswanathan, K., Ahuja, K. K. & Panda, J. 2008 The sources of jet noise: experimental evidence. J. Fluid Mech. 615, 253292.CrossRefGoogle Scholar
Tanna, H. K. 1977 An experimental study of jet noise. Part I: Turbulent mixing noise. J. Sound Vib. 50 (3), 405428.CrossRefGoogle Scholar
Zaman, K. B. M. Q. 1985 a Effect of initial condition on subsonic jet noise. AIAA J. 23, 13701373.CrossRefGoogle Scholar
Zaman, K. B. M. Q. 1985 b Far-field noise of subsonic jet under controlled excitation. J. Fluid Mech. 152, 83111.CrossRefGoogle Scholar
Zaman, K. B. M. Q. 1986 Flow field and near and far sound field of a subsonic jet. J. Sound Vib. 106 (1), 116.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101 (3), 449491.CrossRefGoogle Scholar
File 2.6 MB

Bogey and Bailly supplementary movie

Movie 1. Snapshots in the (z,r) plane of vorticity norm obtained for the jets without inlet noise and with initial boundary layer thickness of δ=0.2r0 (JetD02), δ=0.1r0 (JetD01), δ=0.05r0 (JetD005), and δ=0.025r0 (JetD0025). The color scale ranges from 0 to the level of 6.5uj/r0 (uj and r0: jet velocity and radius). Jets with thinner boundary layer develop erlier but at a slower rate, leading to longer potential cores.

Download Bogey and Bailly supplementary movie(Video)
Video 3.8 MB

Bogey and Bailly supplementary movie

Movie 1. Snapshots in the (z,r) plane of vorticity norm obtained for the jets without inlet noise and with initial boundary layer thickness of δ=0.2r0 (JetD02), δ=0.1r0 (JetD01), δ=0.05r0 (JetD005), and δ=0.025r0 (JetD0025). The color scale ranges from 0 to the level of 6.5uj/r0 (uj and r0: jet velocity and radius). Jets with thinner boundary layer develop erlier but at a slower rate, leading to longer potential cores.

Download Bogey and Bailly supplementary movie(Video)
Video 11 MB

Bogey and Bailly supplementary movie

Movie 2. Snapshots in the (z,r) plane of vorticity norm obtained downstream of the pipe lip for the jets without inlet noise and with initial boundary layer thickness of δ=0.2r0 (JetD02), δ=0.1r0 (JetD01), δ=0.05r0 (JetD005), and δ=0.025r0 (JetD0025). The color scale ranges from 0 to the level of 10uj/r0 for JetD02, but to 20uj/r0 for the other jets (uj and r0: jet velocity and radius). In all jets, the shear-layer transition is dominated by processes of vortex rolling-up and paring.

Download Bogey and Bailly supplementary movie(Video)
Video 4 MB

Bogey and Bailly supplementary movie

Movie 3. Snapshots in the (z,r) plane of vorticity norm obtained downstream of the pipe lip for the jets with initial boundary layer of δ=0.05r0, without inlet noise (JetD005) and with random pressure disturbances in the pipe of maximum amplitude 250 Pa (JetD005p250) and 2000 Pa (JetD005p2000). The color scale ranges from 0 to the level of 20uj/r0 (uj and r0: jet velocity and radius). The introduction of inlet noise results in weaker vortex rolling-ups and pairings.

Download Bogey and Bailly supplementary movie(Video)
Video 2.1 MB

Bogey and Bailly supplementary movie

Movie 3. Snapshots in the (z,r) plane of vorticity norm obtained downstream of the pipe lip for the jets with initial boundary layer of δ=0.05r0, without inlet noise (JetD005) and with random pressure disturbances in the pipe of maximum amplitude 250 Pa (JetD005p250) and 2000 Pa (JetD005p2000). The color scale ranges from 0 to the level of 20uj/r0 (uj and r0: jet velocity and radius). The introduction of inlet noise results in weaker vortex rolling-ups and pairings.

Download Bogey and Bailly supplementary movie(Video)
Video 3.7 MB

Bogey and Bailly supplementary movie

Movie 4. Snapshots in the (z,r) plane of vorticity norm and fluctuating pressure obtained directly from Large-Eddy Simulation, for the jets without inlet noise and with initial boundary layer thickness of δ=0.2r0 (JetD02), δ=0.1r0 (JetD01), δ=0.05r0 (JetD005), and δ=0.025r0 (JetD0025). The color scales range for levels from 0 to 5uj/r0 for vorticity, and from -200 to 200 Pa for pressure (uj and r0: jet velocity and radius). Strong acoustic waves are generated by the turbulent transition of the shear layers. Their frequencies and magnitudes decrease with thinner inlet boundary layer.

Download Bogey and Bailly supplementary movie(Video)
Video 10 MB

Bogey and Bailly supplementary movie

Movie 4. Snapshots in the (z,r) plane of vorticity norm and fluctuating pressure obtained directly from Large-Eddy Simulation, for the jets without inlet noise and with initial boundary layer thickness of δ=0.2r0 (JetD02), δ=0.1r0 (JetD01), δ=0.05r0 (JetD005), and δ=0.025r0 (JetD0025). The color scales range for levels from 0 to 5uj/r0 for vorticity, and from -200 to 200 Pa for pressure (uj and r0: jet velocity and radius). Strong acoustic waves are generated by the turbulent transition of the shear layers. Their frequencies and magnitudes decrease with thinner inlet boundary layer.

Download Bogey and Bailly supplementary movie(Video)
Video 32.4 MB

Bogey and Bailly supplementary movie

Movie 5. Snapshots in the (z,r) plane of vorticity norm and fluctuating pressure obtained directly from Large-Eddy Simulation, for the jets with initial boundary layer of δ=0.05r0, without inlet noise (JetD005) and with random pressure disturbances in the pipe of maximum amplitude 250 Pa (JetD005p250) and 2000 Pa (JetD005p2000). The color scales range for levels from 0 to 5uj/r0 for vorticity, and from -150 to 150 Pa for pressure (uj and r0: jet velocity and radius). The introduction of inlet noise reduces vortex pairing noise.

Download Bogey and Bailly supplementary movie(Video)
Video 5.4 MB

Bogey and Bailly supplementary movie

Movie 5. Snapshots in the (z,r) plane of vorticity norm and fluctuating pressure obtained directly from Large-Eddy Simulation, for the jets with initial boundary layer of δ=0.05r0, without inlet noise (JetD005) and with random pressure disturbances in the pipe of maximum amplitude 250 Pa (JetD005p250) and 2000 Pa (JetD005p2000). The color scales range for levels from 0 to 5uj/r0 for vorticity, and from -150 to 150 Pa for pressure (uj and r0: jet velocity and radius). The introduction of inlet noise reduces vortex pairing noise.

Download Bogey and Bailly supplementary movie(Video)
Video 18.2 MB