Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T13:30:39.461Z Has data issue: false hasContentIssue false

Instability regimes in the primary breakup region of planar coflowing sheets

Published online by Cambridge University Press:  01 November 2013

D. Fuster*
Affiliation:
CNRS (UMR 7190), Université Pierre et Marie Curie, Institut Jean le Rond d’Alembert, 75005, Paris, France
J.-P. Matas
Affiliation:
Université de Grenoble Alpes, LEGI, F-38000 Grenoble, France
S. Marty
Affiliation:
Université de Grenoble Alpes, LEGI, F-38000 Grenoble, France
S. Popinet
Affiliation:
NIWA National Institute of Water and Atmospheric Research, PO Box 14-901 Kilbirnie, Wellington, New Zealand
J. Hoepffner
Affiliation:
CNRS (UMR 7190), Université Pierre et Marie Curie, Institut Jean le Rond d’Alembert, 75005, Paris, France
A. Cartellier
Affiliation:
CNRS, LEGI, F-38000 Grenoble, France
S. Zaleski
Affiliation:
CNRS (UMR 7190), Université Pierre et Marie Curie, Institut Jean le Rond d’Alembert, 75005, Paris, France
*
Email address for correspondence: fuster@dalembert.upmc.fr

Abstract

This article investigates the appearance of instabilities in two planar coflowing fluid sheets with different densities and viscosities via experiments, numerical simulation and linear stability analysis. At low dynamic pressure ratios a convective instability is shown to appear for which the frequency of the waves in the primary atomization region is influenced by both liquid and gas velocities. For large dynamic pressure ratios an asymptotic regime is obtained in which frequency is solely controlled by gas velocity and the instability becomes absolute. The transition from convective to absolute is shown to be influenced by the velocity defect induced by the presence of the separator plate. We show that in this regime the splitter plate thickness can also affect the nature of the instability if it is larger than the gas vorticity thickness. Computational and experimental results are in agreement with the predictions of a spatio-temporal stability analysis.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbaglah, G., Delaux, S., Hoepffner, D., Fuster, J., Josserand, C., Popinet, S., Ray, P., Scardovelli, R. & Zaleski, S. 2011 Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. C. R. Acad. Sci. Paris 339, 194207.Google Scholar
Bagué, A., Fuster, D., Popinet, S., Scardovelli, R. & Zaleski, S. 2010 Instability growth rate of two-phase mixing layers from a linear eigenvalue problem and an initial value problem. Phys. Fluids 22 (9), 092104.Google Scholar
Ben Rayana, F. 2007 Contribution à l’étude des instabilités interfaciales liquide-gaz en atomisation assistée et taille de gouttes. PhD thesis, Institut National Polytechnique de Grenoble.Google Scholar
Ben Rayana, F., Cartellier, A. & Hopfinger, E. 2006 Assisted atomization of a liquid layer: investigation of the parameters affecting the mean drop size prediction. In Proceedings ICLASS 2006, August 27–September 1, Kyoto Japan. Academic, iSBN4-9902774-1-4.Google Scholar
Bianchi, G. M., Pelloni, P., Toninel, S., Scardovelli, R., Leboissetier, A. & Zaleski, S. 2005 A quasi-direct 3D simulation of the atomization of high-speed liquid jets. In Proceedings of ICES05, 2005 ASME ICE Division Spring Technical Conference. Chicago, Illinois, USA, April 5–7, 2005.Google Scholar
Boeck, T. & Zaleski, S. 2005 Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys. Fluids 17, 032106.CrossRefGoogle Scholar
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 17911796.Google Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009a Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41, 065001.Google Scholar
Fuster, D., Bagué, A., Boeck, T., Le Moyne, L., Leboissetier, A., Popinet, S., Ray, P., Scardovelli, R. & Zaleski, S. 2009b Simulation of primary atomization with an octree adaptive mesh refinement and VOF method. Intl J. Multiphase Flow 35, 550565.Google Scholar
Gordillo, J. M., Perez-Saborid, M. & Gañan-Calvo, A. M. 2001 Linear stability of co-flowing liquid–gas jets. J. Fluid Mech. 448, 2351.Google Scholar
Gorokhovski, M. & Herrmann, M. 2008 Modelling primary atomization. Annu. Rev. Fluid Mech. 40, 343366.Google Scholar
Huerre, P. & Monkewitz, P. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.Google Scholar
Juniper, M. P. 2006 The effect of confinement on the stability of two-dimensional shear flows. J. Fluid Mech. 565, 171195.CrossRefGoogle Scholar
Juniper, M. P. & Candel, S. M. 2003 The stability of ducted compound flows and consequences for the geometry of coaxial injectors. J. Fluid Mech. 482, 257269.CrossRefGoogle Scholar
Juniper, M. P., Tammisola, O. & Lundell, F. 2011 The local and global stability of confined planar wakes at intermediate Reynolds number. J. Fluid Mech. 686, 218238.Google Scholar
Lasheras, J. C. & Hopfinger, E. J. 2000 Liquid jet instability and atomization in a coaxial gas stream. Annu. Rev. Fluid Mech. 32, 275308.Google Scholar
Lasheras, J. C., Villermaux, E. & Hopfinger, E. J. 1998 Break-up and atomization of a round water jet by a high-speed annular air jet. J. Fluid Mech. 357, 351379.Google Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.Google Scholar
Matas, J. P., Marty, S. & Cartellier, A. 2011 Experimental and analytical study of the shear instability of a gas–liquid mixing layer. Phys. Fluids 23, 094112.Google Scholar
Menard, T., Tanguy, S. & Berlemont, A. 2007 Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet. Intl J. Multiphase Flow 33, 510524.Google Scholar
Ó’Náraigh, L., Spelt, P. D. M. & Shaw, S. J. 2013 Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow. J. Fluid Mech. 714, 5894.CrossRefGoogle Scholar
Ó’Náraigh, L., Spelt, P. D. M. & Zaki, T. A. 2011 Turbulent flow over a liquid layer revisited: multi-equation turbulence modelling. J. Fluid Mech. 683, 357394.CrossRefGoogle Scholar
Otto, T., Rossi, M. & Boeck, T. 2013 Viscous instability of a sheared liquid–gas interface: dependence on fluid properties and basic velocity profile. Phys. Fluids 25, 032103.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 288, 58385866.Google Scholar
Rayleigh, Lord & Baron, J. W. S. 1964 Scientific Papers. Dover.Google Scholar
Raynal, L. 1997 Instabilité et entraînement à l’interface d’une couche de mélange liquide-gaz. PhD thesis, Université Joseph Fourier, Grenoble.Google Scholar
Rees, S. J. & Juniper, M. P. 2010 The effect of confinement on the stability of viscous planar jets and wakes. J. Fluid Mech. 656, 309336.CrossRefGoogle Scholar
Rehab, H., Villermaux, E. & Hopfinger, E. J. 1997 Flow regimes of large-velocity-ratio coaxial jets. J. Fluid Mech. 345 (1), 357381.CrossRefGoogle Scholar
Sahu, K. C., Valluri, P., Spelt, P. D. M. & Matar, O. K. 2007 Linear instability of pressure-driven channel flow of a Newtonian and a Herschel-Bulkley fluid. Phys. Fluids 19, 122101.Google Scholar
Shinjo, J. & Umemura, A. 2010 Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Intl J. Multiphase Flow 36, 513532.CrossRefGoogle Scholar
Shinjo, J. & Umemura, A. 2011 Surface instability and primary atomization characteristics of straight liquid jet sprays. Intl J. Multiphase Flow 37, 12941304.Google Scholar
Tomar, G., Fuster, D., Zaleski, S. & Popinet, S. 2010 Multiscale simulations of primary atomization using gerris. Comput. Fluids 39 (4), 18641874.Google Scholar
Yecko, P. & Zaleski, S. 2005 Transient growth in two-phase mixing layers. J. Fluid Mech. 528, 4352.Google Scholar
Yecko, P., Zaleski, S. & Fullana, J.-M. 2002 Viscous modes in two-phase mixing layers. Phys. Fluids 14, 41154122.Google Scholar