Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T17:32:10.020Z Has data issue: false hasContentIssue false

The interaction between a spatially oscillating jet emitted by a fluidic oscillator and a cross-flow

Published online by Cambridge University Press:  23 January 2019

Florian Ostermann*
Affiliation:
Technische Universität Berlin, Berlin 10623, Germany
Rene Woszidlo
Affiliation:
Technische Universität Berlin, Berlin 10623, Germany
C. Navid Nayeri
Affiliation:
Technische Universität Berlin, Berlin 10623, Germany
C. Oliver Paschereit
Affiliation:
Technische Universität Berlin, Berlin 10623, Germany
*
Email address for correspondence: florian.ostermann@tu-berlin.de

Abstract

This experimental study investigates the fundamental flow field of a spatially oscillating jet emitted by a fluidic oscillator into an attached cross-flow. Dominant flow structures, such as the jet trajectory and dynamics of streamwise vortices, are discussed in detail with the aim of understanding the interaction between the spatially oscillating jet and the cross-flow. The oscillating jet is ejected perpendicular to the cross-flow. A moveable stereoscopic particle image velocimetry (PIV) system is employed for the plane-by-plane acquisition of the flow field. The three-dimensional, time-resolved flow field is obtained by phase averaging the PIV results based on a pressure signal from inside the fluidic oscillator. The influence of velocity ratio and Strouhal number is assessed. Compared to a common steady wall-normal jet, the spatially oscillating jet penetrates to a lesser extent into the cross-flow’s wall-normal direction in favour of a considerable spanwise penetration. The flow field is dominated by streamwise-oriented vortices, which are convected downstream at the speed of the cross-flow. The vortex dynamics exhibits a strong dependence on the Strouhal number. For small Strouhal numbers, the spatially oscillating jet acts similar to a vortex-generating jet with a time-dependent deflection angle. Accordingly, it forms time-dependent streamwise vortices. For higher Strouhal numbers, the cross-flow is not able to follow the motion of the jet, which results in a quasi-steady wake that forms downstream of the jet. The results suggest that the flow field approaches a quasi-steady behaviour when further increasing the Strouhal number.

JFM classification

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aram, S., Lee, Y., Shan, H. & Vargas, A. 2018a Computational fluid dynamic analysis of fluidic actuator for active flow control applications. AIAA J. 56 (1), 111120.10.2514/1.J056255Google Scholar
Aram, S., Shan, H., Ostermann, F. & Woszidlo, R. 2018b Computational validation and analysis of interaction of a sweeping jet and an attached turbulent flow. In 2018 AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.Google Scholar
Arwatz, G., Fono, I. & Seifert, A. 2008 Suction and oscillatory blowing actuator modeling and validation. AIAA J. 46 (5), 11071117.10.2514/1.30468Google Scholar
Campagnuolo, C. J. & Lee, H. C.1969 Review of some fluidic oscillators. Tech. Rep. HDL-TR-1438. Harry Diamond Laboratories, Washington, DC.Google Scholar
Eroglu, A. & Breidenthal, R. E. 2001 Structure, penetration, and mixing of pulsed jets in crossflow. AIAA J. 39 (3), 417423.10.2514/2.1351Google Scholar
Fearn, R. & Weston, R. P. 1974 Vorticity associated with a jet in a cross flow. AIAA J. 12 (12), 16661671.10.2514/3.49576Google Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.10.1017/S0022112094003800Google Scholar
Garcia, D. 2010 A fast all-in-one method for automated post-processing of PIV data. Exp. Fluids 50 (5), 12471259.10.1007/s00348-010-0985-yGoogle Scholar
Gregory, J. & Tomac, M. N. 2013 A review of fluidic oscillator development. In 43rd AIAA Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Haller, G. 2001 Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13 (11), 3365.10.1063/1.1403336Google Scholar
Hansen, L. & Bons, J. 2006 Flow measurements of vortex generator jets in separating boundary layer. J. Propul. Power 22 (3), 558566.10.2514/1.13820Google Scholar
Hossain, M. A., Prenter, R., Lundgreen, R. K., Agricola, L., Ameri, A., Gregory, J. W. & Bons, J. P. 2017a Investigation of crossflow interaction of an oscillating jet. In 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.Google Scholar
Hossain, M. A., Prenter, R., Lundgreen, R. K., Ameri, A., Gregory, J. W. & Bons, J. P. 2017b Experimental and numerical investigation of sweeping jet film cooling. Trans. ASME J. Turbomach. 140 (3), 031009.Google Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, streams, and convergence zones in turbulent flows. Center of Turbulence Res. Rep. CTR-S88, 193–208.Google Scholar
Johnston, J. P. & Nishi, M. 1990 Vortex generator jets – means for flow separation control. AIAA J. 28 (6), 989994.10.2514/3.25155Google Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10 (11), 14251429.10.2514/3.50386Google Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.10.1017/S0022112096001255Google Scholar
Koklu, M. & Owens, L. R. 2017 Comparison of sweeping jet actuators with different flow-control techniques for flow-separation control. AIAA J. 55 (3), 848860.10.2514/1.J055286Google Scholar
Lacarelle, A. & Paschereit, C. O. 2012 Increasing the passive scalar mixing quality of jets in crossflow with fluidics actuators. Trans. ASME J. Engng Gas Turbines Power 134 (2), 21503.10.1115/1.4004373Google Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45 (1), 379407.10.1146/annurev-fluid-120710-101115Google Scholar
Margason, R. J. 1993 Fifty years of jet in cross flow research. In AGARD Conference Proceedings, vol. 538. North Atlantic Treaty Organization.Google Scholar
Ostermann, F., Godbersen, P., Woszidlo, R., Nayeri, C. N. & Paschereit, C. O. 2017a Sweeping jet from a fluidic oscillator in crossflow. Phys. Rev. Fluids 2 (9), 090512.10.1103/PhysRevFluids.2.090512Google Scholar
Ostermann, F., Woszidlo, R., Nayeri, C. N. & Paschereit, C. O. 2015 Phase-averaging methods for the natural flowfield of a fluidic oscillator. AIAA J. 53 (8), 23592368.10.2514/1.J053717Google Scholar
Ostermann, F., Woszidlo, R., Nayeri, C. N. & Paschereit, C. O. 2017b Effect of velocity ratio on the flow field of a spatially oscillating jet in crossflow. In 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.Google Scholar
Ostermann, F., Woszidlo, R., Nayeri, C. N. & Paschereit, C. O. 2018a Properties of a sweeping jet emitted from a fluidic oscillator. J. Fluid Mech. 857, 216238.10.1017/jfm.2018.739Google Scholar
Ostermann, F., Woszidlo, R., Nayeri, C. N. & Paschreit, C. O.2018b Experimental Three-dimensional Velocity Data of a Sweeping Jet from a Fluidic Oscillator Interacting with a Crossflow. Technische Universität Berlin.Google Scholar
Pack Melton, L. G. & Koklu, M. 2016 Active flow control using sweeping jet actuators on a semi-span wing model. In 54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.Google Scholar
Phillips, E. & Wygnanski, I. J. 2013 Use of sweeping jets during transient deployment of a control surface. AIAA J. 51 (4), 819828.10.2514/1.J051683Google Scholar
Raman, G., Packiarajan, S., Papadopoulos, G., Weissman, C. & Raghu, S. 2005 Jet thrust vectoring using a miniature fluidic oscillator. Aeronaut. J. 109 (1093), 129138.10.1017/S0001924000000634Google Scholar
Rixon, G. S. & Johari, H. 2003 Development of a steady vortex generator jet in a turbulent boundary layer. Trans. ASME J. Fluids Engng 125 (6), 1006.10.1115/1.1627833Google Scholar
Schmidt, H.-J., Woszidlo, R., Nayeri, C. N. & Paschereit, C. O. 2015 Drag reduction on a rectangular bluff body with base flaps and fluidic oscillators. Exp. Fluids 56 (7), 151.10.1007/s00348-015-2018-3Google Scholar
Schmidt, H. J., Woszidlo, R., Nayeri, C. N. & Paschereit, C. O. 2017 Separation control with fluidic oscillators in water. Exp. Fluids 58 (8), 106.10.1007/s00348-017-2392-0Google Scholar
Seele, R., Tewes, P., Woszidlo, R., Mcveigh, M. A., Lucas, N. J. & Wygnanski, I. J. 2009 Discrete sweeping jets as tools for improving the performance of the V-22. AIAA J. Aircraft 46 (6), 20982106.10.2514/1.43663Google Scholar
Sieber, M., Ostermann, F., Woszidlo, R., Oberleithner, K. & Paschereit, C. O. 2016 Lagrangian coherent structures in the flow field of a fluidic oscillator. Phys. Rev. Fluids 1 (5), 050509.10.1103/PhysRevFluids.1.050509Google Scholar
Stouffer, R. D. & Bower, R.1998 Fluidic flow meter with fiber optic sensor. Patent US 5827976.Google Scholar
Woszidlo, R., Ostermann, F., Nayeri, C. N. & Paschereit, C. O. 2015 The time-resolved natural flow field of a fluidic oscillator. Exp. Fluids 56 (6), 125.10.1007/s00348-015-1993-8Google Scholar
Woszidlo, R. & Wygnanski, I. J. 2011 Parameters governing separation control with sweeping jet actuators. In 29th AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics.Google Scholar

Ostermann et al. supplementary movie 1

Flow field visualization that shows the finite-time Lyapunov exponent (FTLE) for three velocity ratios.

Download Ostermann et al. supplementary movie 1(Video)
Video 6.2 MB

Ostermann et al. supplementary movie 2

Time-resolved cross-section through the phase-averaged flow field for two velocity ratios.

Download Ostermann et al. supplementary movie 2(Video)
Video 12.1 MB