Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T05:36:01.937Z Has data issue: false hasContentIssue false

Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales

Published online by Cambridge University Press:  20 April 2006

J. Tan-Atichat
Affiliation:
Department of Mechanics and Mechanical Aerospace Engineering, Illinois Institute of Technology, Chicago
H. M. Nagib
Affiliation:
Department of Mechanics and Mechanical Aerospace Engineering, Illinois Institute of Technology, Chicago
R. I. Loehrke
Affiliation:
Department of Mechanical Engineering, Colorado State University, Fort Collins

Abstract

Effects of screens and perforated plates (grids) on free-stream turbulence are studied in several test flow conditions. The level, structure and decay of the turbulence generated by such ‘manipulators’ depend in part on their shear-layer instabilities, and can therefore be modified by inserting additional devices immediately downstream. The performance of screens and some perforated plates is found to depend on the characteristics of the incoming flow such as velocity, turbulence level and spectra. Combinations of perforated plates and screens are found to be very effective flow manipulators. By optimizing the intermanipulator separation and carefully matching the scales between the manipulator pair, the turbulence decay rate downstream of a grid can be quadrupled.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, M., Wigeland, R. A. & Nagib, H. M. 1976 Ill. Inst. Tech. Fluids & Heat Transfer Rep. no. R76-2; NTIS no. AD-029 418.
Batchelor, G. K. 1945 A.C.A. Rep. no. 13.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Bradshaw, P. 1965 J. Fluid Mech. 22, 679687.
Comte-Bellot, G. & Corrsin, S. 1966 J. Fluid Mech. 25, 657687.
Corrsin, S. 1944 N.A.C.A. ACR No. 4H24.
Corrsin, S. 1963 Handbuch der Physik, vol. 8, pp. 524590.
Dryden, H. L. & Schubauer, G. B. 1947 J. Aero. Sci. 14, 221228.
Dryden, H. L. & Schubauer, G. B. 1949 Appendix to Taylor & Batchelor Quart. J. Mech. Appl. Math. 2, 2629.Google Scholar
Fraissenet, A. 1976 Ill. Inst. Tech. Internal Rep.
Hinze, J. O. 1975 Turbulence. McGraw-Hill.
Klebanoff, P. S. & Tidstrom, K. D. 1959 N.A.S.A. Tech. Note no. D-195.
Laws, E. M. & Livesey, J. L. 1978 Ann. Rev. Fluid Mech. 10, 247266.
Loehrke, R. I. & Nagib, H. M. 1972 AGARD Rep. R-598.
Loehrke, R. I. & Nagib, H. M. 1976 Trans. A.S.M.E. I, J. Fluids Engng 98, 342353.
Nagib, H. M., Way, J. L. & Tan-atichat, J. 1975 Prog. Astro. Aero. 37, 503520.
Schubauer, G. B., Spangenberg, W. G. & Klebanoff, P. S. 1950 N.A.C.A. Tech. Note no. 2001.
Tan-Atichat, J., Nagib, H. M. & Loehrke, R. I. 1972 Bull. Am. Phys. Soc. 17, 1097.
Taylor, G. I. & Batchelor, G. K. 1949 Quart. J. Mech. Appl. Math. 2, 129.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Tsuji, H. 1955 J. Phys. Soc. Japan 10, 578586.
Tsuji, H. 1956 J. Phys. Soc. Japan 11, 10961104.
Wigeland, R. A., Ahmed, M. & Nagib, H. M. 1978 A.I.A.A. J. 16, 11251131.