Published online by Cambridge University Press: 26 April 2006
Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier–Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien–Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearly are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow. Experimental uncertainties, the adopted definition of the growth rate, and the transient initial evolution of the TS wave in vibrating-ribbon experiments probably cause the discrepancies. The effect of nonlinearity is consistent with previous weakly nonlinear theories. White nonlinear effects are small near branch I of the neutral curve, they are significant near branch II and delay or event prevent the decay of the wave.