Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T08:13:24.522Z Has data issue: false hasContentIssue false

Local dynamics during thinning and rupture of liquid sheets of power-law fluids

Published online by Cambridge University Press:  17 May 2022

Vishrut Garg
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
Sumeet S. Thete
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
Christopher R. Anthony
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
Osman A. Basaran*
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
*
Email address for correspondence: obasaran@purdue.edu

Abstract

Rupture of liquid sheets of power-law fluids surrounded by a gas is analysed under the competing influences of pressure due to van der Waals attraction, inertia, viscous stress and capillary pressure due to surface tension. Results of a combined theoretical and computational study are presented over the entire range of parameters governing the thinning of a power-law fluid of power-law exponent $0 < n \le 1$ ($n=1$: Newtonian fluid) and Ohnesorge number $0 \le Oh < \infty$, where $Oh \equiv \mu _0/\sqrt {\rho h_0 \sigma }$, and $\mu _0, \rho, h_0$ and $\sigma$ stand for the zero-deformation-rate viscosity, density, the initial sheet half-thickness and surface tension, respectively. The dynamics in the vicinity of the space–time singularity where the sheet ruptures is asymptotically self-similar, and thus the variation with time remaining until rupture $\tau \equiv t_R - t$, where $t_R$ is the time instant $t$ at which the sheet ruptures, of sheet half-thickness, lateral length scale and lateral velocity is determined analytically and confirmed by simulations. For sheets for which inertia is negligible ($Oh^{-1}=0$), two distinct viscous scaling regimes are found, one for $0.58 < n \le 1$ and the other for $n \le 0.58$. The thinning dynamics of inviscid sheets ($Oh = 0$) is identical to that of Newtonian ones. For real fluids for which neither viscosity nor inertia is negligible, it is shown that the aforementioned creeping and inertial flow regimes are transitory and the thinning of power-law sheets exhibits a remarkably richer set of scaling transitions compared with Newtonian sheets.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Air Products and Chemicals Inc., Allentown, PA 18106, USA.

§

Present address: Convergent Science, Madison, WI 53719, USA.

References

REFERENCES

Anthony, C.R., Harris, M.T. & Basaran, O.A. 2020 Initial regime of drop coalescence. Phys. Rev. Fluids 5 (3), 033608.CrossRefGoogle Scholar
Anthony, C.R., Kamat, P.M., Harris, M.T. & Basaran, O.A. 2019 Dynamics of contracting filaments. Phys. Rev. Fluids 4 (9), 093601.CrossRefGoogle Scholar
Anthony, C.R., Kamat, P.M., Thete, S.S., Munro, J.P., Lister, J.R., Harris, M.T. & Basaran, O.A. 2017 Scaling laws and dynamics of bubble coalescence. Phys. Rev. Fluids 2 (8), 083601.CrossRefGoogle Scholar
Arora, A. & Doshi, P. 2016 Fingering instability in the flow of a power-law fluid on a rotating disc. Phys. Fluids 28 (1), 013102.CrossRefGoogle Scholar
Barenblatt, G.I. 1996 Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics, vol. 14. Cambridge University Press.CrossRefGoogle Scholar
Basaran, O.A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications. Am. Inst. Chem. Engrs AIChE J. 48 (9), 18421848.CrossRefGoogle Scholar
Bazzi, M.S. & Carvalho, M.S. 2019 Effect of viscoelasticity on liquid sheet rupture. J. Non-Newtonian Fluid Mech. 264, 107116.CrossRefGoogle Scholar
Becker, J., Grün, G., Seemann, R., Mantz, H., Jacobs, K., Mecke, K.R. & Blossey, R. 2003 Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2 (1), 5963.CrossRefGoogle ScholarPubMed
Benjamin, T.B. & Ursell, F.J. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225 (1163), 505515.Google Scholar
Bhat, P.P., Appathurai, S., Harris, M.T., Pasquali, M., McKinley, G.H. & Basaran, O.A. 2010 Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat. Phys. 6 (8), 625631.CrossRefGoogle Scholar
Bhat, P.P., Basaran, O.A. & Pasquali, M. 2008 Dynamics of viscoelastic liquid filaments: low capillary number flows. J. Non-Newtonian Fluid Mech. 150 (2–3), 211225.CrossRefGoogle Scholar
Bonn, D., Denn, M.M., Berthier, L., Divoux, T. & Manneville, S. 2017 Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89 (3), 035005.CrossRefGoogle Scholar
Braun, R.J. 2012 Dynamics of the tear film. Annu. Rev. Fluid Mech. 44, 267297.CrossRefGoogle Scholar
Brenner, M.P., Lister, J.R. & Stone, H.A. 1996 Pinching threads, singularities and the number 0.0304$\ldots$ Phys. Fluids 8 (11), 28272836.CrossRefGoogle Scholar
Burton, J.C. & Taborek, P. 2007 Two-dimensional inviscid pinch-off: an example of self-similarity of the second kind. Phys. Fluids 19 (10), 102109.CrossRefGoogle Scholar
Castrejón-Pita, J.R., Castrejón-Pita, A.A., Thete, S.S., Sambath, K., Hutchings, I.M., Hinch, J., Lister, J.R. & Basaran, O.A. 2015 Plethora of transitions during breakup of liquid filaments. Proc. Natl Acad. Sci. USA 112 (15), 45824587.CrossRefGoogle ScholarPubMed
Christodoulou, K.N. & Scriven, L.E. 1989 The fluid mechanics of slide coating. J. Fluid Mech. 208, 321354.CrossRefGoogle Scholar
Christodoulou, K.N. & Scriven, L.E. 1992 Discretization of free surface flows and other moving boundary problems. J. Comput. Phys. 99 (1), 3955.CrossRefGoogle Scholar
Cohen-Addad, S., Höhler, R. & Pitois, O. 2013 Flow in foams and flowing foams. Annu. Rev. Fluid Mech. 45 (1), 241268.CrossRefGoogle Scholar
Craster, R.V. & Matar, O.K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.CrossRefGoogle Scholar
De Gennes, P.G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.CrossRefGoogle Scholar
Debrégeas, G., De Gennes, P.G. & Brochard-Wyart, F. 1998 The life and death of “bare” viscous bubbles. Science 279 (5357), 17041707.CrossRefGoogle Scholar
Deen, W.M. 1998 Analysis of Transport Phenomena. Oxford University Press.Google Scholar
Doshi, P. & Basaran, O.A. 2004 Self-similar pinch-off of power law fluids. Phys. Fluids 16 (3), 585593.CrossRefGoogle Scholar
Doshi, P., Suryo, R., Yildirim, O.E., McKinley, G.H. & Basaran, O.A. 2003 Scaling in pinch-off of generalized Newtonian fluids. J. Non-Newtonian Fluid Mech. 113 (1), 127.CrossRefGoogle Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3), 865929.CrossRefGoogle Scholar
Elton, E.S., Reeve, T.C., Thornley, L.E., Joshipura, I.D., Paul, P.H., Pascall, A.J. & Jeffries, J.R. 2020 Dramatic effect of oxide on measured liquid metal rheology. J. Rheol. 64 (1), 119128.CrossRefGoogle Scholar
Erneux, T. & Davis, S.H. 1993 Nonlinear rupture of free films. Phys. Fluids A: Fluid Dyn. 5 (5), 11171122.CrossRefGoogle Scholar
Feng, J.Q. & Basaran, O.A. 1994 Shear-flow over a translationally symmetrical cylindrical bubble pinned on a slot in a plane wall. J. Fluid Mech. 275, 351378.CrossRefGoogle Scholar
Garg, V., Kamat, P.M., Anthony, C.R., Thete, S.S. & Basaran, O.A. 2017 Self-similar rupture of thin films of power-law fluids on a substrate. J. Fluid Mech. 826, 455483.CrossRefGoogle Scholar
Gorla, R.S.R. 2001 Rupture of thin power-law liquid film on a cylinder. J. Appl. Mech. 68 (2), 294297.CrossRefGoogle Scholar
Hasan, S.W., Ghannam, M.T. & Esmail, N. 2010 Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel 89 (5), 10951100.CrossRefGoogle Scholar
Huisman, F.M., Friedman, S.R. & Taborek, P. 2012 Pinch-off dynamics in foams, emulsions and suspensions. Soft Matt. 8 (25), 67676774.CrossRefGoogle Scholar
Ida, M.P. & Miksis, M.J. 1996 Thin film rupture. Appl. Maths Lett. 9 (3), 3540.CrossRefGoogle Scholar
Kamat, P.M., Wagoner, B.W., Thete, S.S. & Basaran, O.A. 2018 Role of Marangoni stress during breakup of surfactant-covered liquid threads: reduced rates of thinning and microthread cascades. Phys. Rev. Fluids 3 (4), 043602.CrossRefGoogle Scholar
Kheshgi, H.S. & Scriven, L.E. 1991 Dewetting: nucleation and growth of dry regions. Chem. Engng Sci. 46 (2), 519526.CrossRefGoogle Scholar
Kistler, S.F. & Scriven, L.E. 1983 Coating flows. In Computational Analysis of Polymer Processing (ed. J.R.A. Pearson & S.M. Richardson), pp. 243–299. Springer.CrossRefGoogle Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.CrossRefGoogle Scholar
Loewenberg, M. & Hinch, E.J. 1996 Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech. 321, 395419.CrossRefGoogle Scholar
Lohse, D. & Villermaux, E. 2020 Double threshold behavior for breakup of liquid sheets. Proc. Natl Acad. Sci. USA 117 (32), 1891218914.CrossRefGoogle ScholarPubMed
Miladinova, S., Lebon, G. & Toshev, E. 2004 Thin-film flow of a power-law liquid falling down an inclined plate. J. Non-Newtonian Fluid Mech. 122 (1), 6978.CrossRefGoogle Scholar
Moreno-Boza, D., Martínez-Calvo, A. & Sevilla, A. 2020 a The role of inertia in the rupture of ultrathin liquid films. Phys. Fluids 32 (11), 112114.CrossRefGoogle Scholar
Moreno-Boza, D., Martínez-Calvo, A. & Sevilla, A. 2020 b Stokes theory of thin-film rupture. Phys. Rev. Fluids 5 (1), 014002.CrossRefGoogle Scholar
Mukherjee, R. & Sharma, A. 2015 Instability, self-organization and pattern formation in thin soft films. Soft Matt. 11 (45), 87178740.CrossRefGoogle ScholarPubMed
Munro, J.P., Anthony, C.R., Basaran, O.A. & Lister, J.R. 2015 Thin-sheet flow between coalescing bubbles. J. Fluid Mech. 773, R3.CrossRefGoogle Scholar
Notz, P.K. & Basaran, O.A. 2004 Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 512, 223256.CrossRefGoogle Scholar
Papageorgiou, D.T. 1995 Analytical description of the breakup of liquid jets. J. Fluid Mech. 301, 109132.CrossRefGoogle Scholar
Paulsen, J.D., Burton, J.C., Nagel, S.R., Appathurai, S., Harris, M.T. & Basaran, O.A. 2012 The inexorable resistance of inertia determines the initial regime of drop coalescence. Proc. Natl Acad. Sci. USA 109 (18), 68576861.CrossRefGoogle ScholarPubMed
Rauscher, M., Muench, A., Wagner, B. & Blossey, R. 2005 A thin-film equation for viscoelastic liquids of Jeffreys type. Eur. Phys. J. E 17 (3), 373379.CrossRefGoogle ScholarPubMed
Reiter, G. 1992 Dewetting of thin polymer films. Phys. Rev. Lett. 68 (1), 7578.CrossRefGoogle ScholarPubMed
Renardy, M. 2002 Similarity solutions for jet breakup for various models of viscoelastic fluids. J. Non-Newtonian Fluid Mech. 104 (1), 6574.CrossRefGoogle Scholar
Ruckenstein, E. & Jain, R.K. 1974 Spontaneous rupture of thin liquid films. J. Chem. Soc. Faraday Trans. 2 70, 132147.CrossRefGoogle Scholar
Sambath, K., Garg, V., Thete, S.S., Subramani, H.J. & Basaran, O.A. 2019 Inertial impedance of coalescence during collision of liquid drops. J. Fluid Mech. 876, 449480.CrossRefGoogle Scholar
Savage, J.R., Caggioni, M., Spicer, P.T. & Cohen, I. 2010 Partial universality: pinch-off dynamics in fluids with smectic liquid crystalline order. Soft Matt. 6 (5), 892895.CrossRefGoogle Scholar
Stange, T.G., Evans, D.F. & Hendrickson, W.A. 1997 Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 13 (16), 44594465.CrossRefGoogle Scholar
Stewart, P.S., Feng, J., Kimpton, L.S., Griffiths, I.M. & Stone, H.A. 2015 Stability of a bi-layer free film: simultaneous or individual rupture events? J. Fluid Mech. 777, 2749.CrossRefGoogle Scholar
Suryo, R. & Basaran, O.A. 2006 Local dynamics during pinch-off of liquid threads of power law fluids: scaling analysis and self-similarity. J. Non-Newtonian Fluid Mech. 138 (2), 134160.CrossRefGoogle Scholar
Teletzke, G.F., Davis, H.T. & Scriven, L.E. 1987 How liquids spread on solids. Chem. Engng Commun. 55 (1–6), 4182.CrossRefGoogle Scholar
Thete, S.S., Anthony, C., Basaran, O.A. & Doshi, P. 2015 Self-similar rupture of thin free films of power-law fluids. Phys. Rev. E 92 (2), 023014.CrossRefGoogle ScholarPubMed
Thete, S.S., Anthony, C., Doshi, P., Harris, M.T. & Basaran, O.A. 2016 Self-similarity and scaling transitions during rupture of thin free films of newtonian fluids. Phys. Fluids 28 (9), 092101.CrossRefGoogle Scholar
Vaynblat, D., Lister, J.R. & Witelski, T.P. 2001 Rupture of thin viscous films by van der Waals forces: evolution and self-similarity. Phys. Fluids 13 (5), 11301140.CrossRefGoogle Scholar
Wagoner, B.W., Thete, S.S. & Basaran, O.A. 2018 A new experimental method based on volume measurement for determining axial scaling during breakup of drops and liquid threads. Phys. Fluids 30 (8), 082102.CrossRefGoogle Scholar
Weinstein, S.J. & Ruschak, K.J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.CrossRefGoogle Scholar
Wilkes, E.D., Phillips, S.D. & Basaran, O.A. 1999 Computational and experimental analysis of dynamics of drop formation. Phys. Fluids 11 (12), 35773598.CrossRefGoogle Scholar
Witelski, T.P. & Bernoff, A.J. 1999 Stability of self-similar solutions for van der Waals driven thin film rupture. Phys. Fluids 11 (9), 24432445.CrossRefGoogle Scholar
Yildirim, O.E. & Basaran, O.A. 2001 Deformation and breakup of stretching bridges of Newtonian and shear-thinning liquids: comparison of one-and two-dimensional models. Chem. Engng Sci. 56 (1), 211233.CrossRefGoogle Scholar
Yoon, Y., Baldessari, F., Ceniceros, H.D. & Leal, L.G. 2007 Coalescence of two equal-sized deformable drops in an axisymmetric flow. Phys. Fluids 19 (10), 102102.CrossRefGoogle Scholar
Zhang, W.W. & Lister, J.R. 1999 Similarity solutions for van der Waals rupture of a thin film on a solid substrate. Phys. Fluids 11 (9), 24542462.CrossRefGoogle Scholar
Zhang, Y.L., Matar, O.K. & Craster, R.V. 2003 Analysis of tear film rupture: effect of non-Newtonian rheology. J. Colloid Interface Sci. 262 (1), 130148.CrossRefGoogle ScholarPubMed
Zheng, Z., Fontelos, M.A., Shin, S., Dallaston, M.C., Tseluiko, D., Kalliadasis, S. & Stone, H.A. 2018 Healing capillary films. J. Fluid Mech. 838, 404434.CrossRefGoogle Scholar