Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T23:24:22.876Z Has data issue: false hasContentIssue false

Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer

Published online by Cambridge University Press:  20 April 2006

Patrice Mestayer
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Laboratoire Associé au C.N.R.S. no. 130, 12 Avenue du Général Leclerc, 13003 Marseille, France

Abstract

High-frequency fluctuations of temperature and of longitudinal and vertical velocity components have been measured with high-resolution probes in order to test the local-isotropy assumption. The simultaneous measurements of u’, w’, θ’ and the measurements in two space points with various separations in either the longitudinal or transverse directions were made in the large boundary layer (Rλ = 616) of the I.M.S.T. Air-Sea Interaction Simulation Tunnel. There is consistent evidence that the local-isotropy assumption is satisfied by the velocity field at all scales smaller than twenty times the Kolmogorov microscale (η ≈ 0.27 × 10−3 m), i.e. in the dissipative range of scales but not in the expected inertial subrange. The direct comparisons of the lateral and longitudinal temperature autocorrelation and structure functions show that the temperature field does not verify the isotropy assumption at all scales greater thanor equal to 37 and presumably at even smaller scales. This is confirmed by the study of the temperature-increment skewness and flatness factors. The spectral distribution -of the non-zero derivative skewness (S(θ) = +0.9) shows that it is essentially contributed by those scales for which the dynamic field satisfies isotropy.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Chambers, A. J., Phong-Anant, D. & Rajagopalan, S. 1979 Boundary-Layer Met. 17, 101.
Antonia, R. A. & Van Atta, C. W. 1978 J. Fluid Mech. 84, 561.
Antonia, R. A. & Van Atta, C. W. 1979 Phys. Fluids 22, 2430.
Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Bradshaw, P. 1969 Aero. Res. Counc. R. & M. no. 36003, 5.
Busch, N. E. 1973 Boundary-Layer Met. 4, 213.
Champagne, F. H. 1978 J. Fluid Mech. 86, 67.
Champagne, F. H., Friehe, C. A., La Rue, J. C. & Wyngaard, J. C. 1977 J. Atmos. Sci. 34, 515.
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 J. Fluid Mech. 41, 81.
Champagne, F. H., Sleicher, C. A. & Wehrmann, O. H. 1967 J. Fluid Mech. 86, 67.
Coantic, M., Bonmarin, P., Pouchain, B. & Favre, A. 1969 AGARD Conf. Proc. CP48, 17–0.
Coantic, M., Ramamonjiarisoa, A., Mestayer, P., Resch, F. & Favre, A. 1981 J. Geophys. Res. 86, 6607.
Corrsin, S. 1949 J. Aero. Sci. 16, 757.
Corrsin, S. 1952 J. Appl. Phys. 23, 113.
Corrsin, S. 1958 NACA RM 58B11.
Dreyer, G. F. 1974 Ph.D. dissertation, University of California, San Diego.
Dunckel, M. L., Hasse, L., Krugermeyer, L., Schriever, D. & Wucknitz, J. 1974 Boundary-Layer Met. 6, 81.
Freymuth, P. 1981 Kinematic and dimensional arguments on derivative skewness in turbulent shear flows. In Proc. Joint A.S.M.E./A.S.C.E. Bioengineering, Fluids Engineering and Applied Mechanics Conf., June 22–24, Boulder.
Freymuth, P. & Uberoi, M. S. 1971 Phys. Fluids 14, 2574.
Garratt, J. R. 1972 Q. J. R. Met. Soc. 98, 642.
Gibson, C. H., Friehe, C. A. & McConnell, S. O. 1977 Phys. Fluids Suppl. 20, S156.
Gibson, C. H. & Schwarz, W. H. 1963 J. Fluid Mech. 16, 365.
Gibson, C. H., Stegen, G. R. & Williams, R. B. 1970 J. Fluid Mech. 41, 153.
Gibson, M. M. 1962 Nature 195, 1281.
Gibson, M. M. 1963 J. Fluid Mech. 15, 161.
Hill, R. J. 1978 J. Fluid Mech. 88, 541.
Larchevéque, M., Chollet, J. P., Herring, J. R., Lesieur, M., Newman, G. R. & Schertzer, D. 1980 In Turbulent Shear Flows 2 (ed. L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw). Springer.
Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Cote, O. R. 1972 Q. J. R. Met. Soc. 98, 563.
Klebanoff, P. S. 1953 NACA Rep. no. 1247.
Kolmogorov, A. N. 1941 Dokl. Akad. Nauk S.S.S.R. 30, 301.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 1.
Larsen, S. E. & Busch, N. E. 1974 DISA Info. 16, 15.
Larsen, S. E. & Busch, N. E. 1976 DISA Info. 20, 5.
Laufer, J. 1951 NACA Rep. no. 1033.
Leavitt, E. 1975 J. Phys. Oceanogr. 5, 157.
Lumley, J. L. 1965 Phys. Fluids 8, 1056.
Mcbean, G. A. & Elliott, J. A. 1978 J. Atmos. Sci. 35, 1890.
Mestayer, P. 1975 Thèse de Docteur-Ingénieur, I.M.S.T., Université d'Aix-Marseille II, France.
Mestayer, P. 1980 Thèse de Docteur ès Sciences Physiques, Université d'Aix-Marseille II, France.
Mestayer, P. 1982 Spatial resolution of a multi- (non-identical) wire probe. (In preparation.)
Mestayer, P. & Chambaud, P. 1979 Boundary-Layer Met. 16, 311.
Mestayer, P. G., Champagne, F. H., Friehe, C. A., La Rue, J. C. & Gibson, C. H. 1978 In Turbulent Fluxes Through the Sea Surface, Wave Dynamics and Prediction (ed. A. Favre & K. Hasselmann), p. 51. Plenum.
Mestayer, P. G., Gibson, C. H., Coantic, M. F. & Patel, A. S. 1976 Phys. Fluids 19, 1279.
Mestayer, P., Pages, J. P., Coantic, M. & Saissac, J. 1980 In Proc. Joint Symp. on Heat and Mass Transfer and the Structure of Turbulence (ed. Z. Zaric). Hemisphere.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. M.I.T. Press.
Obukhov, A. M. 1946 Akad. Nauk S.S.S.R. Inst. Teor. Geofiz. Trudy 1. 95.
Pao, Y. H. 1965 Phys. Fluids 8, 1063.
Park, J. T. 1976 Ph.D. thesis, University of California, San Diego.
Revault D'Allonnes, M. 1978 Thèse de Doctorat ès Sciences Physiques. Musèum National d'Histoire Naturelle de Paris, Université Pierre et Marie Curie (Paris VII), France.
Schmitt, K. F., Friehe, C. A. & Gibson, C. H. 1978a Boundary-Layer Met. 15, 215.
Schmitt, K. F., Friehe, C. A. & Gibson, C. H. 1978b J. Phys. Oceanogr 8, 151.
Sreenivasan, K. R., Antonia, R. A. & Britz, D. 1979 J. Fluid Mech. 94, 745.
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Phys. Fluids 20, 1238.
Sreenivasan, K. R. & Tavoularis, S. 1980 J. Fluid Mech. 101, 783.
Tani, I. & Kobayashi, Y. 1952 In Proc. 1st Japan Nat. Congr. Appl. Mech. p. 465.
Taylor, G. I. 1935 In Proc. R. Soc. Lond. A151, 421.Google Scholar
Townsend, A. A. 1948 Austr. J. Sci. Res. 1, 161.
Townsend, A. A. 1951 Proc. Camb. Phil. Soc. 47, 375.
Uberoi, M. S. 1957 J. Appl. Phys. 28, 1165.
Uberoi, M. S. & Freymuth, P. 1969 Phys. Fluids 12, 1359.
Uberoi, M. S. & Freymuth, P. 1970 Phys. Fluids 13, 2205.
Van Atta, C. W. 1977 J. Fluid Mech. 80, 609.
Williams, R. M. & Paulson, C. A. 1978 J. Fluid Mech. 83, 547.
Wyngaard, J. C. 1968 J. Sci. Instrum. 1, 1105.
Wyngaard, J. C. 1976 The maintenance of temperature derivative skewness in large Reynolds number flows. Unpublished manuscript.
Wyngaard, J. C. & Clifford, S. F. 1977 J. Atmos. Sci. 34, 922.