Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T02:05:12.388Z Has data issue: false hasContentIssue false

Microstructure and thickening of dense suspensions under extensional and shear flows

Published online by Cambridge University Press:  27 July 2017

Ryohei Seto*
Affiliation:
Mathematical Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
Giulio G. Giusteri
Affiliation:
Mathematical Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
Antonio Martiniello
Affiliation:
Mathematical Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
*
Email address for correspondence: setoryohei@me.com

Abstract

Dense suspensions are non-Newtonian fluids that exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure that is built under flows and by the interactions between particles. By imposing extensional and shear flows, we can assess the degree of flow-type dependence in regimes below and above thickening. Even when the flow-type dependence is hindered, non-dissipative responses, such as normal stress differences, are present and characterise the non-Newtonian behaviour of dense suspensions.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahamadi, M. & Harlen, O. G. 2008 A Lagrangian finite element method for simulation of a suspension under planar extensional flow. J. Comput. Phys. 227 (16), 75437560.Google Scholar
Barnes, H. A. 1989 Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33 (2), 329366.Google Scholar
Bender, J. & Wagner, N. J. 1996 Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J. Rheol. 40, 899916.CrossRefGoogle Scholar
Bossis, G. & Brady, J. F. 1984 Dynamic simulation of sheared suspensions. I. General method. J. Chem. Phys. 80, 51415154.Google Scholar
Brady, J. F. & Bossis, G. 1985 The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155, 105129.Google Scholar
Brown, E. & Jaeger, H. M. 2009 Dynamic jamming point for shear thickening suspensions. Phys. Rev. Lett. 103, 086001.Google Scholar
Clavaud, C., Bérut, A., Metzger, B. & Forterre, Y. 2017 Revealing the frictional transition in shear-thickening suspensions. Proc. Natl Acad. Sci. USA 114 (20), 51475152.Google Scholar
Couturier, É., Boyer, F., Pouliquen, O. & Guazzelli, É. 2011 Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech. 686, 2639.Google Scholar
Cwalina, C. D. & Wagner, N. J. 2014 Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions. J. Rheol. 58 (4), 949967.CrossRefGoogle Scholar
Dai, S. & Tanner, R. I. 2017 Elongational flows of some non-colloidal suspensions. Rheol. Acta 56 (1), 6371.Google Scholar
Dbouk, T., Lobry, L. & Lemaire, E. 2013 Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.Google Scholar
Fall, A., Huang, N., Bertrand, F., Ovarlez, G. & Bonn, D. 2008 Shear thickening of cornstarch suspensions as a reentrant jamming transition. Phys. Rev. Lett. 100, 018301.Google Scholar
Fernandez, N., Mani, R., Rinaldi, D., Kadau, D., Mosquet, M., Lombois-Burger, H., Cayer-Barrioz, J., Herrmann, H. J., Spencer, N. D. & Isa, L. 2013 Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys. Rev. Lett. 111, 108301.CrossRefGoogle ScholarPubMed
Giusteri, G. G. & Seto, R.2017 A theoretical framework for steady-state rheometry in generic flow conditions. Preprint, arXiv:1702.02745.Google Scholar
Guy, B. M., Hermes, M. & Poon, W. C. K. 2015 Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett. 115, 088304.CrossRefGoogle ScholarPubMed
Heussinger, C. 2013 Shear thickening in granular suspensions: interparticle friction and dynamically correlated clusters. Phys. Rev. E 88, 050201.Google ScholarPubMed
Hoffman, R. L. 1998 Explanations for the cause of shear thickening in concentrated colloidal suspensions. J. Rheol. 42, 111123.CrossRefGoogle Scholar
Kraynik, A. M. & Reinelt, D. A. 1992 Extensional motions of spatially periodic lattices. Intl J. Multiphase Flow 18 (6), 10451059.Google Scholar
Laun, H. M. 1984 Rheological properties of aqueous polymer dispersions. Angew. Makromol. Chem. 123 (1), 335359.Google Scholar
Laun, H. M. 1994 Normal stresses in extremely shear thickening polymer dispersions. J. Non-Newtonian Fluid Mech. 54, 87108.Google Scholar
Lee, M., Alcoutlabi, M., Magda, J. J., Dibble, C., Solomon, M. J., Shi, X. & McKenna, G. B. 2006 The effect of the shear-thickening transition of model colloidal spheres on the sign of N 1 and on the radial pressure profile in torsional shear flows. J. Rheol. 50 (3), 293311.Google Scholar
Lees, A. W. & Edwards, S. F. 1972 The computer study of transport processes under extreme conditions. J. Phys. C 5 (15), 19211929.CrossRefGoogle Scholar
Lin, N. Y. C., Guy, B. M., Hermes, M., Ness, C., Sun, J., Poon, W. C. K. & Cohen, I. 2015 Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115, 228304.Google Scholar
Lootens, D., van Damme, H., Hémar, Y. & Hébraud, P. 2005 Dilatant flow of concentrated suspensions of rough particles. Phys. Rev. Lett. 95, 268302.Google Scholar
Mari, R., Seto, R., Morris, J. F. & Denn, M. M. 2014 Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58 (6), 16931724.Google Scholar
Mari, R., Seto, R., Morris, J. F. & Denn, M. M. 2015a Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proc. Natl Acad. Sci. USA 112 (50), 1532615330.CrossRefGoogle ScholarPubMed
Mari, R., Seto, R., Morris, J. F. & Denn, M. M. 2015b Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E 91, 052302.Google Scholar
Melrose, J. R. & Ball, R. C. 2004 ‘Contact networks’ in continuously shear thickening colloids. J. Rheol. 48, 961978.CrossRefGoogle Scholar
Miller, R. M., Singh, J. P. & Morris, J. F. 2009 Suspension flow modeling for general geometries. Chem. Engng Sci. 64 (22), 45974610.Google Scholar
Morris, J. F. 2009 A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta 48, 909923.Google Scholar
Sami, S.1996 Stokesian dynamics simulations of Brownian suspensions in extensional flow. MSc thesis, California Institute of Technology.Google Scholar
Seto, R., Mari, R., Morris, J. F. & Denn, M. M. 2013 Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111, 218301.CrossRefGoogle ScholarPubMed
Tanner, R. I. & Dai, S. 2016 Particle roughness and rheology in noncolloidal suspensions. J. Rheol. 60 (4), 809818.Google Scholar
Todd, B. D. & Daivis, P. J. 1998 Nonequilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions. Phys. Rev. Lett. 81, 11181121.Google Scholar
Wyart, M. & Cates, M. E. 2014 Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112, 098302.Google Scholar
Zinchenko, A. Z. & Davis, R. H. 2015 Extensional and shear flows, and general rheology of concentrated emulsions of deformable drops. J. Fluid Mech. 779, 197244.Google Scholar