Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T03:15:33.041Z Has data issue: false hasContentIssue false

Multifractal characteristics of combustor dynamics close to lean blowout

Published online by Cambridge University Press:  29 October 2015

Vishnu R. Unni*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai-600036, India
R. I. Sujith
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai-600036, India
*
Email address for correspondence: vishnu.runni@gmail.com

Abstract

In classical literature, blowout is described as loss of static stability of the combustion system whereas thermoacoustic instability is seen as loss of dynamic stability of the system. At blowout, the system transitions from a stable reacting state to a non-reacting state, indicating loss of static stability of the reaction. However, this simple description of stability margin is inadequate since recent studies have shown that combustors exhibit complex nonlinear behaviour prior to blowout. Recently, it was shown that combustion noise that characterizes the regime of stable operation is itself dynamically complex and exhibits multifractal characteristics. Researchers have already described the transition from combustion noise to combustion instability as a loss of multifractality. In this work, we provide a multifractal description for lean blowout in combustors with turbulent flow and thus introduce a unified framework within which both thermoacoustic instability and blowout can be described. Further, we introduce a method for predicting blowout based on the multifractal description of blowout.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellows, B. D., Neumeier, Y. & Lieuwen, T. 2006 Flame transfer function saturation mechanisms in a swirl-stabilized combustor. J. Propul. Power 22 (5), 10751084.Google Scholar
Chaudhuri, S., Kostka, S., Renfro, M. W. & Cetegen, B. M. 2010 Blowoff dynamics of bluff body stabilized conical premixed flames. Combust. Flame 157 (4), 790802.Google Scholar
Chiu, H. H. & Summerfield, M. 1974 Theory of combustion noise. Acta Astronaut. 1 (7–8), 967984.CrossRefGoogle Scholar
De Zilwa, S. R. N., Uhm, J. H. & Whitelaw, J. H. 2000 Combustion oscillations close to the lean flammability limit. Combust. Sci. Technol. 160, 231258.Google Scholar
Domen, S., Gotoda, H., Kuriyama, T., Okuno, Y. & Tachibana, S. 2015 Detection and prevention of blowout in a lean premixed gas-turbine model combustor using dynamical system theory. Proc. Combust. Inst. 35, 32453253.Google Scholar
Gotoda, H., Amano, M., Miyano, T., Ikawa, T., Maki, K. & Tachibana, S. 2012 Characterization of complexities in combustion instability in a lean premixed gas turbine model combustor. Chaos 22, 043128.Google Scholar
Gotoda, H., Shinoda, Y., Kobayashi, M., Okuno, Y. & Tachibana, S. 2014 Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89, 022910.Google Scholar
Harikrishnan, K. P., Misra, R., Ambika, G. & Amritkar, R. E. 2010 Computing the multifractal spectrum from time series: an algorithmic approach. Chaos 19, 143129.Google Scholar
Hegde, U. G., Reuter, D., Daniel, B. R. & Zinn, B. T. 1987 Flame driving of longitudinal instabilities in dump type Ramjet combustors. Combust. Sci. Technol. 55, 125138.Google Scholar
Hurst, H. E. 1951 Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Engrs. 116, 770799.Google Scholar
Ihlen, E. A. 2012 Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers in Physiology 3, 00141.Google Scholar
Kabiraj, L. & Sujith, R. I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.Google Scholar
Kantelhardt, J. W. 2011 Fractal and multifractal time series. In Mathematics of Complexity and Dynamical Systems (ed. Meyers, R. A.), pp. 463487. Springer.Google Scholar
Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A. & Stanley, H. E. 2002 Multifractal detrended fluctuation analysis of non-stationary time series. Physica A 316, 87114.Google Scholar
Komarek, T. & Polifke, W. 2012 Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. Trans. ASME J. Engng Gas Turbines Power 132, 061503.Google Scholar
Lieuwen, T.2007 Static and dynamic combustion instability. Gas Turbine Handbook, U.S. Department of Energy, DOE/NETL-2006/1230, 197–203.Google Scholar
Lieuwen, T. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. ISBN: 1-56347-669-X-1.Google Scholar
Longwell, J., Frost, E. & Weiss, M. 1953 Flame stability in bluff body recirculation zones. Ind. Engng Chem. 45, 16291633.Google Scholar
Mandelbrot, B. B. 1999 Multifractals and 1/f Noise. vol. 14. Springer.Google Scholar
Moeck, J. P., Oevermann, M., Klein, R., Paschereit, C. O. & Schmidt, H. 2009 A two-way coupling for modeling thermoacoustic instabilities in a flat flame Rijke tube. Proc. Combust. Inst. 32, 11991207.Google Scholar
Mukhopadhyay, A., Chaudhari, R. R., Paul, T., Sen, S. & Ray, A. 2013 Lean blow-out prediction in gas turbine combustors using symbolic time series analysis. J. Propul. Power 29, 950960.Google Scholar
Muruganandam, T.2006 Sensing and dynamics of lean blowout in a swirl dump combustor. PhD dissertation, Georgia Institute of Technology.Google Scholar
Nair, S.2006 Acoustic characterization of flame blowout phenomena. PhD dissertation, Georgia Institute of Technology.Google Scholar
Nair, S. & Lieuwen, T. C. 2007 Near-blowoff dynamics of a bluff-body stabilized flame. J. Propul. Power 23, 421427.CrossRefGoogle Scholar
Nair, V. & Sujith, R. I. 2013 Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos 23, 033136.Google Scholar
Nair, V. & Sujith, R. I. 2014 Multifractality in combustion noise: predicting an impending combustion instability. J. Fluid Mech. 747, 635655.Google Scholar
Nair, V. & Sujith, R. I. 2015 A reduced-order model for the onset of combustion instability: physical mechanisms for intermittency and precursors. Proc. Combust. Inst. 35, 31933200.CrossRefGoogle Scholar
Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S. & Sujith, R. I. 2013 Loss of chaos in combustion noise as a precursor of impending combustion instability. Intl J. Spray Combust. Dyn. 5, 273290.Google Scholar
Nair, V., Thampi, G. & Sujith, R. I. 2014 Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470487.Google Scholar
Noiray, N. & Schuermans, B. 2013 On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers. Proc. R. Soc. Lond. A 469, 20120535.Google Scholar
Plee, S. & Mellor, A. 1979 Characteristic time correlation for lean blowoff of bluff-body-stabilized flames. Combust. Flame 35, 6180.Google Scholar
Radhakrishnan, K., Heywood, J. & Tabaczynski, R. 1981 Premixed turbulent flame blowoff velocity correlation based on coherent structures in turbulent flows. Combust. Flame 42, 1933.Google Scholar
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Sarkar, S., Mukherjee, K., Sarkar, S. & Ray, A. 2012 Symbolic transient time-series analysis for fault detection in aircraft gas turbine engines. In American Control Conference, pp. 51325137.Google Scholar
Schertzer, D. & Lovejoy, S. 2011 Multifractals, generalized scale invariance and complexity in geophysics. Intl J. Bifurcation Chaos 21 (12), 34173456.Google Scholar
Shanbhogue, S. J., Husain, S. & Lieuwen, T. C. 2009 Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 35, 98120.CrossRefGoogle Scholar
Spalding, D. 1955 Some Fundamentals of Combustion. Butterworth.Google Scholar
Sreenivasan, K. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23 (1), 539604.Google Scholar
Sreenivasan, K. R. & Meneveau, C. 1986 The fractal facets of turbulence. J. Fluid Mech. 173, 357386.Google Scholar
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4, 157176.Google Scholar
Unni, V. R., Nair, V. & Sujith, R. I.2014 System and method to control blowout in combustion systems, Patent, PCT fled on 7th Nov.Google Scholar
West, B. J., Latka, M., Glaubic-Latka, M. & Latkam, D. 2003 Multifractality of cerebral blood flow. Physica A 318, 453460.Google Scholar