Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T20:19:37.227Z Has data issue: false hasContentIssue false

Non-equilibrium three-dimensional boundary layers at moderate Reynolds numbers

Published online by Cambridge University Press:  25 November 2019

Adrián Lozano-Durán*
Affiliation:
Center for Turbulence Research, Stanford University, CA 94305, USA
Marco G. Giometto
Affiliation:
Department of Civil Engineering and Engineering Mechanics, Columbia University, NY 10027, USA
George Ilhwan Park
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
Parviz Moin
Affiliation:
Center for Turbulence Research, Stanford University, CA 94305, USA
*
Email address for correspondence: adrianld@stanford.edu

Abstract

Non-equilibrium wall turbulence with mean-flow three-dimensionality is ubiquitous in geophysical and engineering flows. Under these conditions, turbulence may experience a counter-intuitive depletion of the turbulent stresses, which has important implications for modelling and control. Yet, current turbulence theories have been established mainly for statistically two-dimensional equilibrium flows and are unable to predict the reduction in the Reynolds stress magnitude. In the present work, we propose a multiscale model that captures the response of non-equilibrium wall-bounded turbulence under the imposition of three-dimensional strain. The analysis is performed via direct numerical simulation of transient three-dimensional turbulent channels subjected to a sudden lateral pressure gradient at friction Reynolds numbers up to 1000. We show that the flow regimes and scaling properties of the Reynolds stress are consistent with a model comprising momentum-carrying eddies with sizes and time scales proportional to their distance to the wall. We further demonstrate that the reduction in Reynolds stress follows a spatially and temporally self-similar evolution caused by the relative horizontal displacement between the core of the momentum-carrying eddies and the flow layer underneath. Inspection of the flow energetics reveals that this mechanism is associated with lower levels of pressure–strain correlation, which ultimately inhibits the generation of Reynolds stress, consistent with previous works. Finally, we assess the ability of the state-of-the-art wall-modelled large-eddy simulation to predict non-equilibrium three-dimensional flows.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Agostini, L. & Leschziner, M. 2017 Spectral analysis of near-wall turbulence in channel flow at Re 𝜏 = 4200 with emphasis on the attached-eddy hypothesis. Phys. Rev. Fluids 2, 014603.CrossRefGoogle Scholar
del Álamo, J. C. & Jiménez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.CrossRefGoogle Scholar
Anderson, S. D. & Eaton, J. K. 1987 Experimental study of a pressure-driven, three-dimensional, turbulent boundary layer. AIAA J. 25 (8), 10861092.CrossRefGoogle Scholar
Anderson, S. D. & Eaton, J. K. 1989 Reynolds stress development in pressure-driven three-dimensional turbulent boundary layers. J. Fluid Mech. 202, 263294.CrossRefGoogle Scholar
Baars, W., Hutchins, N. & Marusic, I. 2017 Self-similarity of wall-attached turbulence in boundary layers. J. Fluid Mech. 823, R2.CrossRefGoogle Scholar
Bae, H. J., Lozano-Durán, A., Bose, S. T. & Moin, P. 2018a Dynamic wall model for the slip boundary condition in large-eddy simulation. J. Fluid Mech. 859, 400432.CrossRefGoogle Scholar
Bae, H. J., Lozano-Durán, A., Bose, S. T. & Moin, P. 2018b Turbulence intensities in large-eddy simulation of wall-bounded flows. Phys. Rev. Fluids 3, 014610.CrossRefGoogle Scholar
Balaras, E., Benocci, C. & Piomelli, U. 1996 Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34 (6), 11111119.CrossRefGoogle Scholar
van den Berg, B. & Elsenaar, A.1972 Measurements in a three-dimensional incompressible turbulent boundary layer in an adverse pressure gradient under infinite swept wing conditions. Tech. Rep., Nationaal Lucht-en Ruimtevaartlaboratorium.Google Scholar
van den Berg, B., Elsenaar, A., Lindhout, J. & Wesseling, P. 1975 Measurements in an incompressible three-dimensional turbulent boundary layer, under infinite swept-wing conditions, and comparison with theory. J. Fluid Mech. 70 (1), 127148.CrossRefGoogle Scholar
van den Berg, B., Lindhout, J. P. F., Humphreys, D. A. & Krause, E. 1988 Three-dimensional turbulent boundary layers-calculations and experiments. In Analysis of an EURO-VISC Workshop, Notes on Numerical Fluid Mechanics. vol. 19, p. 168. Vieweg.Google Scholar
Bissonnette, L. R. & Mellor, G. L. 1974 Experiments on the behaviour of an axisymmetric turbulent boundary layer with a sudden circumferential strain. J. Fluid Mech. 63 (2), 369413.CrossRefGoogle Scholar
Bogard, D. G. & Tiederman, W. G. 1986 Burst detection with single-point velocity measurements. J. Fluid Mech. 162, 389413.CrossRefGoogle Scholar
Bose, S. T. & Moin, P. 2014 A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26 (1), 015104.CrossRefGoogle Scholar
Bose, S. T. & Park, G. I. 2018 Wall-modeled LES for complex turbulent flows. Annu. Rev. Fluid Mech. 50 (1), 535561.CrossRefGoogle ScholarPubMed
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.CrossRefGoogle Scholar
Bradshaw, P. & Pontikos, N. 1985 Measurements in the turbulent boundary layer on an ‘infinite’ swept wing. J. Fluid Mech. 159, 105130.CrossRefGoogle Scholar
Bradshaw, P. & Terrell, M.1969 The response of a turbulent boundary layer on an ‘infinite’ swept wing to the sudden removal of pressure gradient. NPL Aero Report 1305.Google Scholar
Carton de Wiart, C., Larsson, J. & Murman, S. M. 2018 Validation of WMLES on a periodic channel flow featuring adverse/favorable pressure gradients. In Tenth International Conference on Computational Fluid Dynamics (ICCFD10), p. 355.Google Scholar
Castillo, L. & George, W. K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39 (1), 4147.CrossRefGoogle Scholar
Chandran, D., Baidya, R., Monty, J. P. & Marusic, I. 2017 Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 826, R1.CrossRefGoogle Scholar
Chapman, D. R. 1979 Computational aerodynamics development and outlook. AIAA J. 17 (12), 12931313.CrossRefGoogle Scholar
Cheng, C., Li, W., Lozano-Durán, A. & Liu, H. 2019 Identity of attached eddies in turbulent channel flows with bidimensional empirical mode decomposition. J. Fluid Mech. 870, 10371071.CrossRefGoogle ScholarPubMed
Chiang, C. & Eaton, J. 1996 An experimental study of the effects of three-dimensionality on the near wall turbulence structures using flow visualization. Exp. Fluids 20 (4), 266272.CrossRefGoogle Scholar
Choi, K.-S. & Clayton, B. R. 2001 The mechanism of turbulent drag reduction with wall oscillation. Intl J. Heat Fluid Flow 22 (1), 19.CrossRefGoogle Scholar
Choi, H. & Moin, P. 2012 Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24 (1), 011702.CrossRefGoogle Scholar
Choi, J.-I., Xu, C.-X. & Sung, H. J. 2002 Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40 (5), 842850.CrossRefGoogle Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Math. Comput. 22 (104), 745762.CrossRefGoogle Scholar
Coleman, G. N., Ferziger, J. & Spalart, P. 1990 A numerical study of the turbulent Ekman layer. J. Fluid Mech. 213, 313348.CrossRefGoogle Scholar
Coleman, G. N., Kim, J. & Le, A.-T. 1996a A numerical study of three-dimensional wall-bounded flows. Intl J. Heat Fluid Flow 17 (3), 333342.CrossRefGoogle Scholar
Coleman, G. N., Kim, J. & Spalart, P. R. 1996b Direct numerical simulation of strained three-dimensional wall-bounded flows. Exp. Therm. Fluid Sci. 13 (3), 239251.CrossRefGoogle Scholar
Coleman, G. N., Kim, J. & Spalart, P. R. 2000 A numerical study of strained three-dimensional wall-bounded turbulence. J. Fluid Mech. 416, 75116.CrossRefGoogle Scholar
Coles, D. E. & Hirst, E. 1969 Computation of turbulent boundary layers. In 1968 AFOSR-IFP-Stanford Conference.Google Scholar
Compton, D. A. & Eaton, J. K. 1997 Near-wall measurements in a three-dimensional turbulent boundary layer. J. Fluid Mech. 350, 189208.CrossRefGoogle Scholar
Cossu, C. & Hwang, Y. 2017 Self-sustaining processes at all scales in wall-bounded turbulent shear flows. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160088.Google ScholarPubMed
Davidson, P. A., Nickels, T. B. & Krogstad, P.-A. 2006 The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech. 550, 5160.CrossRefGoogle Scholar
De Graaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.CrossRefGoogle Scholar
Dong, S., Lozano-Durán, A., Sekimoto, A. & Jiménez, J. 2017 Coherent structures in statistically stationary homogeneous shear turbulence. J. Fluid Mech. 816, 167208.CrossRefGoogle Scholar
Driver, D. M. & Hebbar, S. K. 1987 Experimental study of a three-dimensional, shear-driven, turbulent boundary layer. AIAA J. 25 (1), 3542.CrossRefGoogle Scholar
Driver, D. M. & Hebbar, S. K. 1989 Three-dimensional shear-driven boundary-layer flow with streamwise adverse pressure gradient. AIAA J. 27 (12), 16891697.CrossRefGoogle Scholar
Driver, D. M. & Hebbar, S. K.1991 Three-dimensional turbulent boundary layer flow over a spinning cylinder. NASA Ames Research Center Tech. Rep.Google Scholar
Durbin, P. A. 2018 Some recent developments in turbulence closure modeling. Annu. Rev. Fluid Mech. 50 (1), 77103.CrossRefGoogle Scholar
Eaton, J. 1991 Turbulence structure and heat transfer in three-dimensional boundary layers. In Proceedings of the 9th Symposium on Energy Engineering Sciences.Google Scholar
Eaton, J. K. 1995 Effects of mean flow three dimensionality on turbulent boundary-layer structure. AIAA J. 33 (11), 20202025.CrossRefGoogle Scholar
Elsenaar, A. & Boelsma, S.1974 Measurements of the Reynolds stress tensor in a three-dimensional turbulent boundary layer under infinite swept wing conditions. Tech. Rep., Nationaal Lucht-en Ruimtevaartlaboratorium.Google Scholar
Farrell, B. F., Gayme, D. F. & Ioannou, P. J. 2017 A statistical state dynamics approach to wall turbulence. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160081.Google ScholarPubMed
Farrell, B. F., Ioannou, P. J., Jiménez, J., Constantinou, N. C., Lozano-Durán, A. & Nikolaidis, M.-A. 2016 A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane poiseuille flow. J. Fluid Mech. 809, 290315.CrossRefGoogle Scholar
Fernholz, H. & Vagt, J.-D. 1981 Turbulence measurements in an adverse-pressure-gradient three-dimensional turbulent boundary layer along a circular cylinder. J. Fluid Mech. 111, 233269.CrossRefGoogle Scholar
Flack, K. A. 1993 Near wall investigation of three dimensional turbulent boundary layers. In Stanford University Thermosciences Div. Rep., MD-63.Google Scholar
Flack, K. & Johnston, J. 1994 Near-wall flow in a three-dimensional turbulent boundary layer on the endwall of a rectangular bend. In 32nd Aerospace Sciences Meeting and Exhibit, p. 405.Google Scholar
Flores, O. & Jiménez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22 (7), 071704.CrossRefGoogle Scholar
Furuya, M. & Fujita, H. 1966 Turbulent boundary layer over rough gauze surfaces. Trans. Japan Soc. Mech. Engrs 32, 724733.CrossRefGoogle Scholar
Ganapathisubramani, B. 2008 Statistical structure of momentum sources and sinks in the outer region of a turbulent boundary layer. J. Fluid Mech. 606, 225237.CrossRefGoogle Scholar
Giometto, B. M. G., Lozano-Durán, A., Park, G. I. & Moin, P. 2017 Three-dimensional transient channel flow at moderate Reynolds numbers: analysis and wall modeling. In Center for Turbulence Research – Annual Research Briefs, pp. 193205.Google Scholar
Hack, M. J. P. & Zaki, T. A. 2015 Modal and non-modal stability of boundary layers forced by spanwise wall oscillations. J. Fluid Mech. 778, 389427.CrossRefGoogle Scholar
He, S., Lozano-Durán, A., He, J. & Cho, M. 2018 Turbulent-turbulent transition of a transient three-dimensional channel flow. In Center for Turbulence Research – Proceedings of the Summer Program, pp. 257266.Google Scholar
He, S. & Seddighi, M. 2013 Turbulence in transient channel flow. J. Fluid Mech. 715, 60102.CrossRefGoogle Scholar
He, S. & Seddighi, M. 2015 Transition of transient channel flow after a change in Reynolds number. J. Fluid Mech. 764, 395427.CrossRefGoogle Scholar
Hellström, L., Marusic, I. & Smits, A. 2016 Self-similarity of the large-scale motions in turbulent pipe flow. J. Fluid Mech. 792, R1.CrossRefGoogle Scholar
Herrmann, M. 2010 Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow. Trans. ASME J. Engng Gas Turbines Power 132 (6), 061506.CrossRefGoogle Scholar
Holstad, A., Andersson, H. I. & Pettersen, B. 2010 Turbulence in a three-dimensional wall-bounded shear flow. Intl J. Numer. Meth. Fluids 62 (8), 875905.Google Scholar
Howard, R. & Sandham, N. 1997 Simulation and modelling of the skew response of turbulent channel flow to spanwise flow deformation. In Direct and Large-Eddy Simulation II, pp. 213224. Springer.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re 𝜏 = 2003. Phys. Fluids 18 (1), 011702.Google Scholar
Hwang, Y. 2015 Statistical structure of self-sustaining attached eddies in turbulent channel flow. J. Fluid Mech. 767, 254289.CrossRefGoogle Scholar
Hwang, Y. & Bengana, Y. 2016 Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708738.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105, 044505.CrossRefGoogle ScholarPubMed
Hwang, Y. & Cossu, C. 2011 Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids 23 (6), 061702.CrossRefGoogle Scholar
Hwang, J. & Sung, H. 2018 Wall-attached structures of velocity fluctuations in a turbulent boundary layer. J. Fluid Mech. 856, 958983.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Johnston, J. P. 1970 Measurements in a three-dimensional turbulent boundary layer induced by a swept, forward-facing step. J. Fluid Mech. 42 (4), 823844.CrossRefGoogle Scholar
Johnston, J. P. & Flack, K. A. 1996 Review – advances in three-dimensional turbulent boundary layers with emphasis on the wall-layer regions. J. Fluids Engng 118 (2), 219232.CrossRefGoogle Scholar
Jung, W., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids 4 (8), 16051607.CrossRefGoogle Scholar
Jung, S. Y. & Sung, H. J. 2006 Characterization of the three-dimensional turbulent boundary layer in a concentric annulus with a rotating inner cylinder. Phys. Fluids 18 (11), 115102.CrossRefGoogle Scholar
Kannepalli, C. & Piomelli, U. 2000 Large-eddy simulation of a three-dimensional shear-driven turbulent boundary layer. J. Fluid Mech. 423, 175203.CrossRefGoogle Scholar
Kawai, S. & Larsson, J. 2012 Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys. Fluids 24 (1), 015105.CrossRefGoogle Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44 (1), 203225.CrossRefGoogle Scholar
Khalighi, Y., Ham, F., Nichols, J., Lele, S. & Moin, P. 2011 Unstructured Large Eddy Simulation for Prediction of Noise Issued from Turbulent Jets in Various Configurations. AIAA.CrossRefGoogle Scholar
Kiesow, R. O. & Plesniak, M. W. 2002 Modification of near-wall structure in a shear-driven 3-D turbulent boundary layer. Trans. ASME J. Fluids Engng 124 (1), 118126.CrossRefGoogle Scholar
Kiesow, R. O. & Plesniak, M. W. 2003 Near-wall physics of a shear-driven three-dimensional turbulent boundary layer with varying crossflow. J. Fluid Mech. 484, 139.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Klewicki, J., Fife, P., Wei, T. & McMurtry, P. 2007 A physical model of the turbulent boundary layer consonant with mean momentum balance structure. Phil. Trans. R. Soc. Lond. A 365 (1852), 823840.CrossRefGoogle ScholarPubMed
Laadhari, F., Skandaji, L. & Morel, R. 1994 Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6 (10), 32183220.CrossRefGoogle Scholar
Larsson, J., Kawai, S., Bodart, J. & Bermejo-Moreno, I. 2016 Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Engng Rev. 3 (1), 15-00418.Google Scholar
Le, A.-T.1999 A numerical study of three-dimensional turbulent boundary layers. PhD thesis, University of California.Google Scholar
Le, A.-T., Coleman, G. N. & Kim, J. 1999 Near-wall turbulence structures in three-dimensional boundary layers. In Proc. First Intl Symp. on Turbulence and Shear Flow Phenomena, pp. 147152.Google Scholar
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
LESGO2019 A parallel pseudo-spectral large-eddy simulation code. https://lesgo.me.jhu.edu.Google Scholar
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (3), 633635.CrossRefGoogle Scholar
Littell, H. S. & Eaton, J. K. 1994 Turbulence characteristics of the boundary layer on a rotating disk. J. Fluid Mech. 266, 175207.CrossRefGoogle Scholar
Lohmann, R. P. 1976 The response of a developed turbulent boundary layer to local transverse surface motion. Trans. ASME J. Fluids Engng 98 (3), 354363.CrossRefGoogle Scholar
Lozano-Durán, A. & Bae, H. J. 2016 Turbulent channel with slip boundaries as a benchmark for subgrid-scale models in LES. In Annual Research Briefs, pp. 97103. Center for Turbulence Research, Stanford University.Google Scholar
Lozano-Durán, A. & Bae, H. 2019 Characteristic scales of Townsend’s wall attached eddies. J. Fluid Mech. 868, 698725.CrossRefGoogle ScholarPubMed
Lozano-Durán, A., Bae, H., Bose, S. & Moin, P. 2017 Dynamic wall models for the slip boundary condition. In Center for Turbulence Research – Annual Research Briefs, pp. 229242.Google Scholar
Lozano-Durán, A., Bae, H. & Encinar, M. P. 2020 Causality of energy-containing eddies in wall turbulence. J. Fluid Mech. 882, A2.CrossRefGoogle Scholar
Lozano-Durán, A. & Borrell, G. 2016 Algorithm 964: An efficient algorithm to compute the genus of discrete surfaces and applications to turbulent flows. ACM Trans. Math. Softw. 42 (4), 34:1–34:19.Google Scholar
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.CrossRefGoogle Scholar
Lozano-Durán, A., Hack, M. J. P. & Moin, P. 2018 Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations. Phys. Rev. Fluids 3, 023901.CrossRefGoogle ScholarPubMed
Lozano-Durán, A. & Jiménez, J. 2014a Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014b Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.CrossRefGoogle Scholar
Maciel, Y., Rossignol, K.-S. & Lemay, J. 2006 Self-similarity in the outer region of adverse-pressure-gradient turbulent boundary layers. AIAA J. 44 (11), 24502464.CrossRefGoogle Scholar
Maciel, Y., Wei, T., Gungor, A. G. & Simens, M. P. 2018 Outer scales and parameters of adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 844, 535.CrossRefGoogle Scholar
Mansour, N. N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.CrossRefGoogle Scholar
Marusic, I. & Monty, J. P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51 (1), 4974.CrossRefGoogle Scholar
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Mathur, A., Gorji, S., He, S., Seddighi, M., Vardy, A. E., ODonoghue, T. & Pokrajac, D. 2018 Temporal acceleration of a turbulent channel flow. J. Fluid Mech. 835, 471490.CrossRefGoogle Scholar
McKeon, B. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.CrossRefGoogle Scholar
Meneveau, C. & Marusic, I. 2013 Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech. 719, R1.CrossRefGoogle Scholar
Millikan, C. B. 1938 A critical discussion of turbulent flows in channels and circular tubes. In Proceedings 5th Int. Congr. Applied Mechanics, New York (ed. Hartog, J. P. D. & Peters, H.), pp. 386392. Wiley.Google Scholar
Mizuno, Y. & Jiménez, J. 2011 Mean velocity and length-scales in the overlap region of wall-bounded turbulent flows. Phys. Fluids 23 (8), 085112.CrossRefGoogle Scholar
Moin, P., Shih, T., Driver, D. & Mansour, N. N. 1990 Direct numerical simulation of a three-dimensional turbulent boundary layer. Phys. Fluids 2 (10), 18461853.CrossRefGoogle Scholar
Moin, P., Squires, K., Cabot, W. & Lee, S. 1991 A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids 3 (11), 27462757.CrossRefGoogle Scholar
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.CrossRefGoogle Scholar
Monkewitz, P. A., Chauhan, K. A. & Nagib, H. M. 2008 Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers. Phys. Fluids 20 (10), 105102.CrossRefGoogle Scholar
Morrison, J. F., McKeon, B. J., Jiang, W. & Smits, A. J. 2004 Scaling of the streamwise velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99131.CrossRefGoogle Scholar
Ölçmen, M. & Simpson, R. 1992 Perspective: on the near wall similarity of three-dimensional turbulent boundary layers (data bank contribution). Trans. ASME J. Fluids Engng 114 (4), 487495.CrossRefGoogle Scholar
Ölçmen, S. M. & Simpson, R. L. 1995 An experimental study of a three-dimensional pressure-driven turbulent boundary layer. J. Fluid Mech. 290, 225262.CrossRefGoogle Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit. Springer.CrossRefGoogle Scholar
Osawa, K. & Jiménez, J. 2018 Intense structures of different momentum fluxes in turbulent channels. Phys. Rev. Fluids 3, 084603.CrossRefGoogle Scholar
Panton, R. 1984 Incompressible Flow. Wiley.Google Scholar
Panton, R. L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37 (4), 341383.CrossRefGoogle Scholar
Park, G. I. & Moin, P. 2014 An improved dynamic non-equilibrium wall-model for large eddy simulation. Phys. Fluids 26 (1), 015108.CrossRefGoogle Scholar
Park, G. I. & Moin, P. 2016 Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation. Phys. Rev. Fluids 1, 024404.CrossRefGoogle ScholarPubMed
Perry, A. E. & Abell, C. J. 1975 Scaling laws for pipe-flow turbulence. J. Fluid Mech. 67, 257271.CrossRefGoogle Scholar
Perry, A. E. & Abell, C. J. 1977 Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. J. Fluid Mech. 79, 785799.CrossRefGoogle Scholar
Piomelli, U. & Balaras, E. 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349374.CrossRefGoogle Scholar
Pirozzoli, S., Modesti, D., Orlandi, P. & Grasso, F. 2018 Turbulence and secondary motions in square duct flow. J. Fluid Mech. 840, 631655.CrossRefGoogle Scholar
Prandtl, L. 1925 Bericht über die Entstehung der Turbulenz. Z. Angew. Math. Mech. 5, 136139.CrossRefGoogle Scholar
Ricco, P. & Quadrio, M. 2008 Wall-oscillation conditions for drag reduction in turbulent channel flow. Intl J. Heat Fluid Flow 29 (4), 891902.CrossRefGoogle Scholar
Rosenfeld, A. & Kak, A. C. 1982 Digital Picture Processing: Volume 1 and 2, 2nd edn. Academic Press.Google Scholar
Rowley, C. W. & Dawson, S. T. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49 (1), 387417.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Schwarz, W. R. & Bradshaw, P. 1993 Measurements in a pressure-driven three-dimensional turbulent boundary layer during development and decay. AIAA J. 31 (7), 12071214.CrossRefGoogle Scholar
Schwarz, W. R. & Bradshaw, P. 1994 Turbulence structural changes for a three-dimensional turbulent boundary layer in a 30° bend. J. Fluid Mech. 272, 183210.CrossRefGoogle Scholar
Seddighi, M., He, S., Pokrajac, D., ODonoghue, T. & Vardy, A. E. 2015 Turbulence in a transient channel flow with a wall of pyramid roughness. J. Fluid Mech. 781, 226260.CrossRefGoogle Scholar
Sendstad, O.1992 The near wall mechanics of three-dimensional turbulent boundary layers. Tech. Rep. Rep. TF 57. Thermo Sci. Div. Mech. Eng. Stanford University.Google Scholar
Sillero, J. A., Jiménez, J. & Moser, R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 25 (10), 105102.CrossRefGoogle Scholar
Sillero, J. A., Jiménez, J. & Moser, R. D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿+ ≈ 2000. Phy. Fluids 26 (10), 105109.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re 𝜃 = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Spalart, P. R. 1989 Theoretical and numerical study of a three-dimensional turbulent boundary layer. J. Fluid Mech. 205, 319340.CrossRefGoogle Scholar
Townsend, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97120.CrossRefGoogle Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Vallikivi, M., Ganapathisubramani, B. & Smits, A. J. 2015 Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech. 771, 303326.CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.CrossRefGoogle Scholar
Wallace, J. M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48 (1), 131158.CrossRefGoogle Scholar
Wang, M. & Moin, P. 2002 Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Phys. Fluids 14 (7), 20432051.CrossRefGoogle Scholar
Webster, D., De Graaff, D. & Eaton, J. 1996 Turbulence characteristics of a boundary layer over a swept bump. J. Fluid Mech. 323, 122.CrossRefGoogle Scholar
Wray, A. A.1990 Minimal-storage time advancement schemes for spectral methods. Tech. Rep. MS 202 A-1. NASA Ames Research Center.Google Scholar
Wu, X., Moin, P., Adrian, R. J. & Baltzer, J. R. 2015 Osborne Reynolds pipe flow: direct simulation from laminar through gradual transition to fully developed turbulence. Proc. Natl Acad. Sci. USA 112 (26), 79207924.CrossRefGoogle ScholarPubMed
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114 (27), E5292E5299.CrossRefGoogle ScholarPubMed
Wu, X. & Squires, K. 1997 Large eddy simulation of an equilibrium three-dimensional turbulent boundary layer. AIAA J. 35 (1), 6774.CrossRefGoogle Scholar
Wu, X. & Squires, K. D. 1998 Prediction of the three-dimensional turbulent boundary layer over a swept bump. AIAA J. 36 (4), 505514.CrossRefGoogle Scholar
Wu, X. & Squires, K. D. 2000 Prediction and investigation of the turbulent flow over a rotating disk. J. Fluid Mech. 418, 231264.CrossRefGoogle Scholar
Yang, Q., Willis, A. & Hwang, Y. 2019 Exact coherent states of attached eddies in channel flow. J. Fluid Mech. 862, 10291059.CrossRefGoogle Scholar
Yang, X. I. A., Sadique, J., Mittal, R. & Meneveau, C. 2015 Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys. Fluids 27 (2), 025112.CrossRefGoogle Scholar
Zagarola, M. V. & Smits, A. J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.CrossRefGoogle Scholar